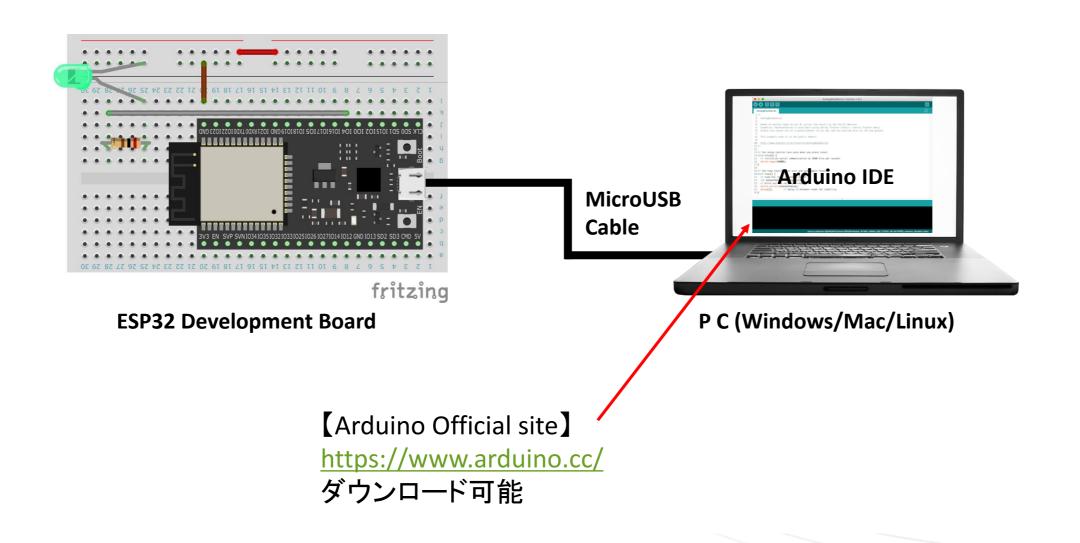
【概要編】

電子工作を始めるならまず「Lチカ」

- ・電子工作を始める第一歩の「Lチカ」
- ・LED点灯させるプログラムで基本を習得

目 《LED編》

- 1. 概要
 - 1-1. 製作全体の流れ
 - 1-2. 開発環境Arduinoについて
 - 1-3. マイコンESP32選定理由
 - 1-4. マイコンESP32について
 - 1-5. ブレッドボード
 - 1-6. ブレッドボード選定
- 2. 回路図
- 3. 配線図
- 4. ソフトウェア
- 5. 動作確認


利用物品は 《概要編》を参照ください。

1-1. スマートリモコン製作全体の流れ

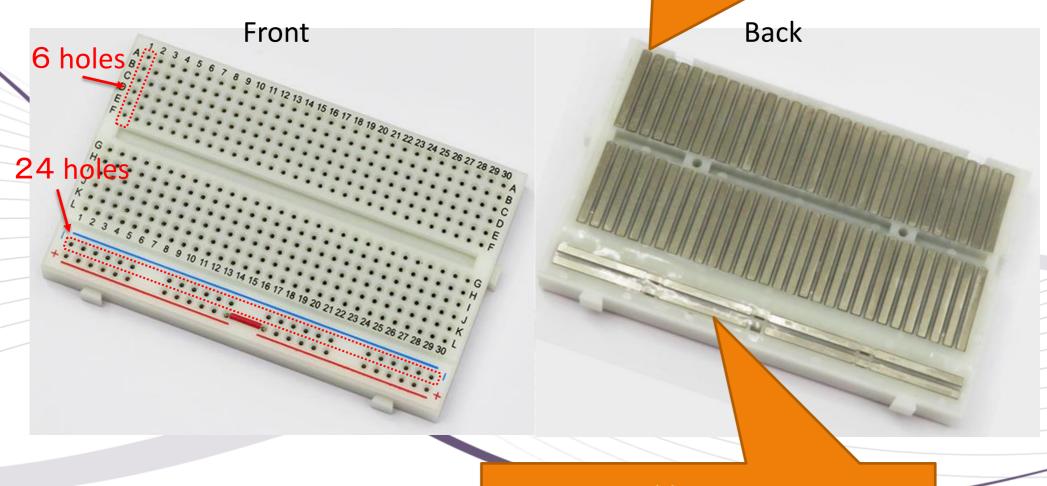
No	項目		ハード	ソフト	記事
1	概要	全体の流れ、システム構成、利用物品、 選定理由、開発環境など		ı	別動画で配信
2	LED	初めて電子工作される方向けの基本を行います。 LEDの点灯、点滅を行う「Lチカ」を製作します。		0	今回はこの動画
3	赤外線受信センサ	赤外線受信センサーの説明 回路図から配線、ソフトウェア	0	0	
4	赤外線送信LED	赤外線送信LEDの説明 回路図から配線、ソフトウェア		0	
5	スマホでLED操作 (宅内)	工作したリモコンのLEDを屋内のスマホから操作する ソフトウェアを製作します。(Webサーバ機能、SPIFFS操作)	-	0	別動画で配信
6	スマホでリモコン操作 エ作したリモコンを屋内のスマホから操作する (宅内) ソフトウェアを製作します。(ボタン名、信号保存・読出)		-	0	
7	屋外からスマホで操作 及び、AIスピーカ連携	工作したリモコンを屋外からスマホで操作したり AIスピーカ連携を実現するソフトウェアを製作します。	-	0	

1-2. 開発環境Arduinoについて

開発環境はArduinoを利用していきます。

1-3. マイコンESP32選定理由

Ī		 	─ 今回はこちら ─	1
		ArduinoUNO 【Arduino純正】	ESP32 【Arduino互換】	RasberryPi
	学習の 容易性	〇 Arduino利用可能	〇 Arduino利用可能	× Linuxベース
	性能 (CPU、メモ リ、機能等)	△ ESP32と比較して低い	〇 IoT機器の利用として 十分な性能	◎ 性能が高い
	汎用性	〇 電子工作として十分	〇 電子工作として十分	◎ AIなども開発可能で 汎用性が高い

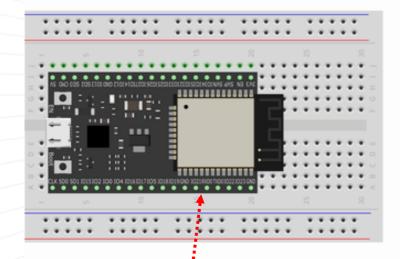

1-4. マイコンESP32開発ボードについて

	Espressif製		他社製 (多くの他社製)
	ESP32-WROOM 今回はこちら	ESP32-WROVER	ESP32
技適認証	認証済み		△ 日本で利用するの は違法(実験以外)
フラッシュ メモリ	O 4Mbyte [SRAM : 512Kbyte]	© 8Mbyte	-
価格	1,600円*	1,600円*	安い Amazonなどで販売

*2023.1現在 秋月電子

1-5. ブレッドボード

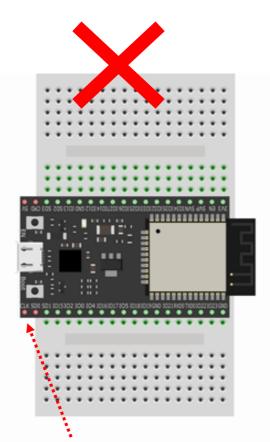
横の6穴が各々全て導通されている



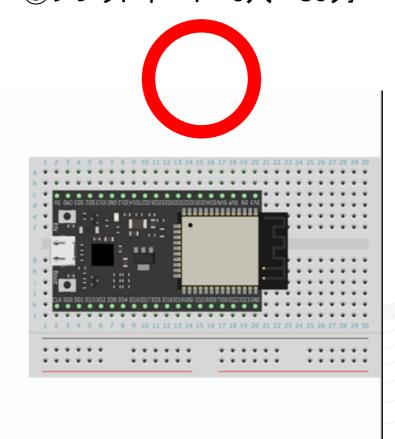
縦の2Lineが各々導通されている

1-6. ブレッドボード選定

①ブレッドボード 5穴 * 30列



片方に配線する空き穴が無い ので、以下のような対応が必要


- ・片方のみ利用
- ・ESP32の下に配線して利用
- -2つのブレッドボードで利用

②ミニブレッドボード

17列しかないので、19pinが 入らない

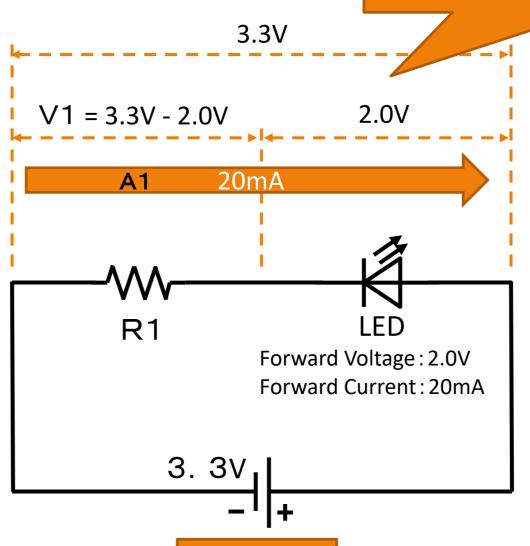
③ブレッドボード 6穴 * 30列

今回採用

fritzino

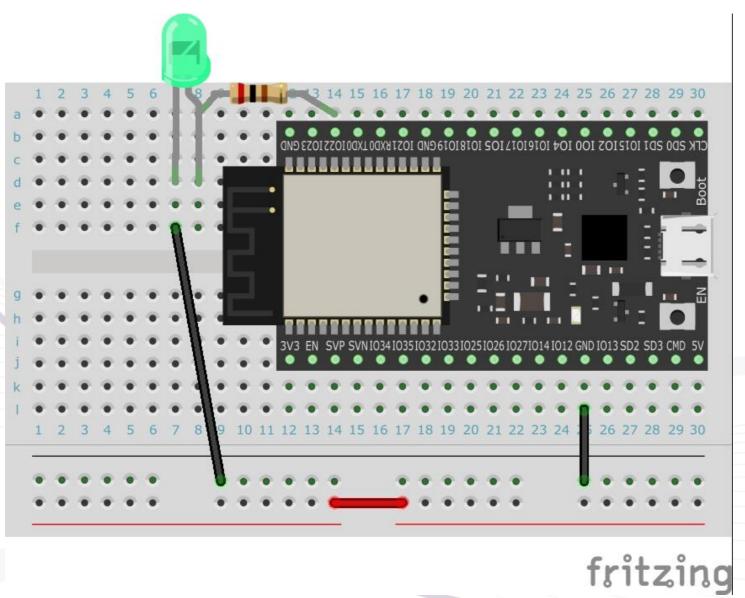
2. 回路図と抵抗値の計算

LEDの性能から2.0Vと一定の電圧になるため、 20mAの電流を流すには以下の式により 抵抗値が求められる

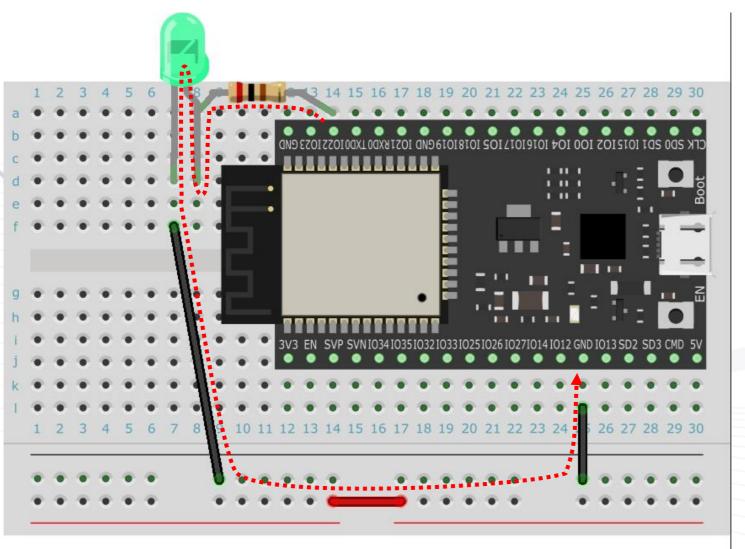

【抵抗値の計算】

(オームの法則)

$$= \frac{3. 3V - 2. 0V}{0. 02A(20mA)} = 65 \Omega$$


65Ωだと明るすぎたので、これより 大きい抵抗なら問題ないので

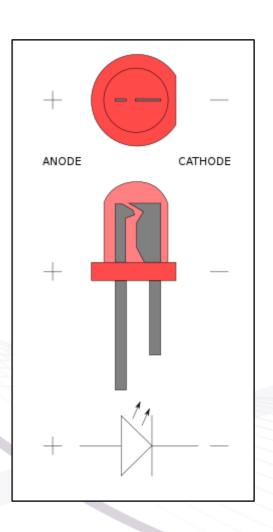
今回は 200Ω を採用



ESP32

3-1. 配線図

3-2. 電流の流れ



●ESP32のピンに電流を流すプログラム

const byte LED_PIN = 22;

digitalWrite(LED_PIN, HIGH);

fritzing

Arduino ソフトウェア仕様

起動時に一度のみ実行

起動中繰り返し実行