Full understanding

IP Address and Communication Mechanism

- Mechanism to identify devices from all over the world.
- Routing technology for acquiring destination routes.
 (The role of subnet mask and default gateway)
- The role of MAC addresses in Ethernet.

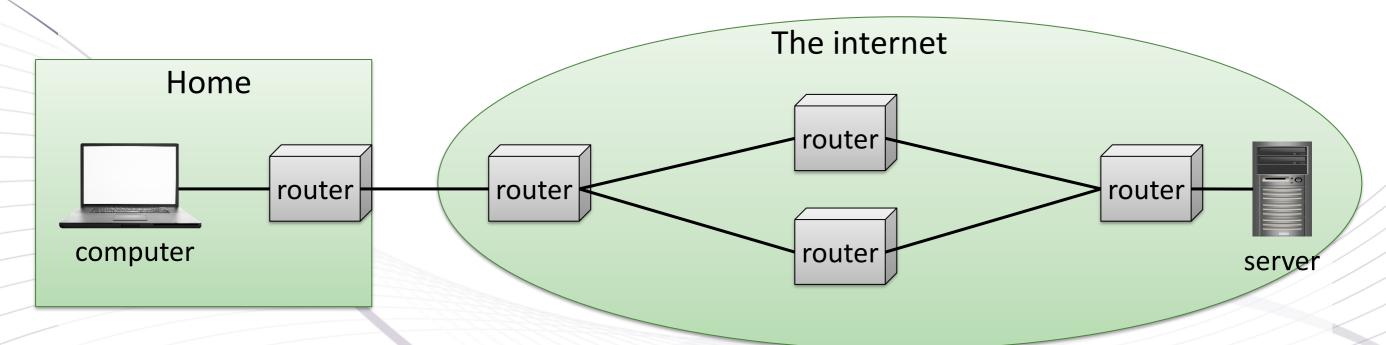
Table of contents

1. IP address overview

2. IP address type and allocation

3. How routing works

4. Ethernet and MAC address


1. IP address overview

- 1-1. What are RFCs?
- 1-2. What is TCP/IP?
- 1-3. Protocol stack
- 1-4. Packet data (capture)
- 1-5. "IPv4" and "IPv6"

1-6. IP address data format

1-1. What are RFCs?

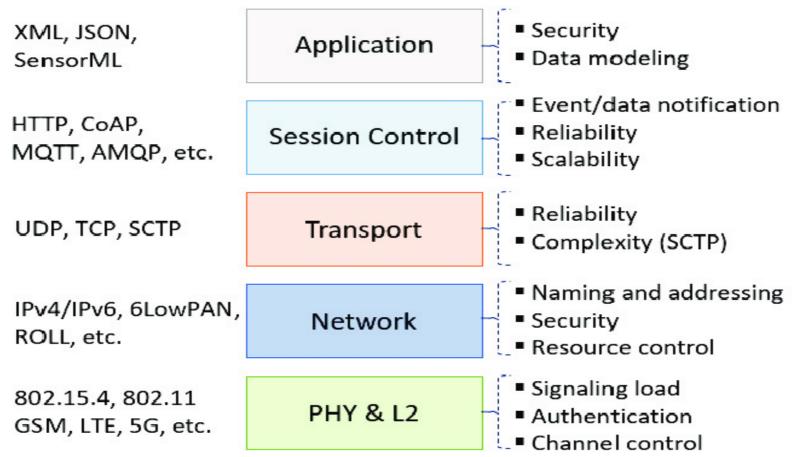
All devices involved in Internet communication must handle data using a predetermined technology. Therefore, standardization (arrangement) of Internet technology is being carried out. This standardization is called RFC.

Standardization organization: IETF (Internet Engineering Task Force)
 Standardized regulations: RFC (Request for Comments)

- 1) IP: RFC791 (IPv4), RFC8200 (IPv6)
- 2) TCP: RFC9293

1-2. What is TCP/IP?

• **TCP/IP** Regulations for communication on the Internet.


- **1**IP : The role of representing addresses on the Internet.
- **2TCP** : The role of delivering data efficiently and reliably according to the state of the communication path.

UDP/IP

3UDP: It does not perform communication control just to deliver.

1-3. Protocol stack

Technical Challenges

https://www.researchgate.net/figure/Protocol-Stack-and-Technical-Challenges_fig1_320453832

Match the rules used by each layer at the transmitting and receiving terminals.
There is no dependency between layers.
Determine the rules to be used for each layer.

1-4. Packet capture (WireShark)

📕 http_cap.pcapng

- 🗆 X

ファイル(F) 編集(E) 表示(V) 移動(G) キャプチャ(C) 分析(A) 統計(S) 電話(y) 無線(W) ツール(T) ヘルプ(H)

■ 表示フィルタ… 〈Ctrl-/〉を適用							
No	. Time	Source	Destination	Protocol	Length Info	^	
	1 0.000000	192.168.1.7	157.7.107.210	TCP	66 53275 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1		
	2 0.000364	192.168.1.7	157.7.107.210	TCP	66 59662 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1		
	3 0.015081	157.7.107.210	192.168.1.7	TCP	66 80 → 53275 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1414 SACK_PERM=1 WS=128		
	4 0.015193	192.168.1.7	157.7.107.210	TCP	54 53275 → 80 [ACK] Sea=1 Ack=1 Win=131328 Len=0		
	5 0.016168	192.168.1.7	157.7.107.210	HTTP	614 GET / HTTP/1.1		
	6 0.016390	157.7.107.210	192.168.1.7	TCP	66 80 → 59662 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1414 SACK_PERM=1 WS=128		
	7 0.016462	192.168.1.7	157.7.107.210	TCP	54 59662 → 80 [ACK] Seq=1 Ack=1 Win=131328 Len=0		
	8 0.031443	157.7.107.210	192.168.1.7	TCP	60 80 → 53275 [ACK] Seq=1 Ack=561 Win=30336 Len=0		
	9 0.542488	157.7.107.210	192.168.1.7	TCP	392 80 → 53275 [PSH, ACK] Seq=1 Ack=561 Win=30336 Len=338 [TCP segment of a reassembled PDU]		
	10 0.543525	157.7.107.210	192.168.1.7	TCP	2882 80 → 53275 [ACK] Seq=339 Ack=561 Win=30336 Len=2828 [TCP segment of a reassembled PDU]		
	11 0.543622	192.168.1.7	157.7.107.210	TCP	54 53275 → 80 [ACK] Seq=561 Ack=3167 Win=131328 Len=0		
	12 0.544684	157.7.107.210	192.168.1.7	TCP	8538 80 → 53275 [ACK] Seq=3167 Ack=561 Win=30336 Len=8484 [TCP segment of a reassembled PDU]		
<						>	

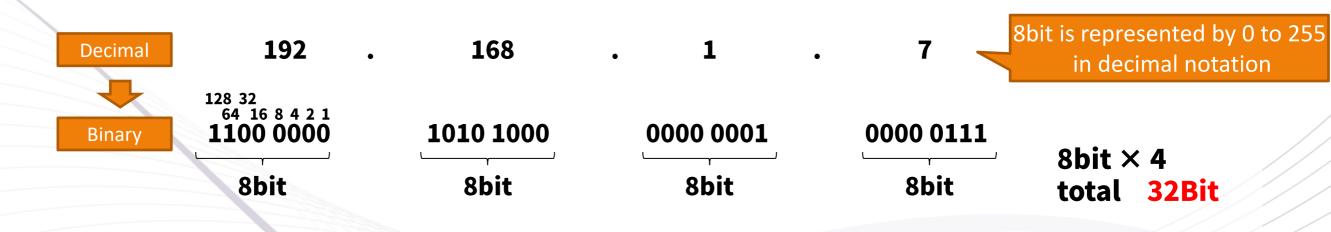
> Frame 5: 614 bytes on wire (4912 bits), 614 bytes captured (4912 bits) on interface \Device\NPF_{EE298557-9F26-440F-870F-072F5825E194}, id 0

> Ethernet II, Src: Tp-LinkT_09:d6:7d (28:ee:52:09:d6:7d), Dst: Mitsubis_86:d6:65 (10:4b:46:86:d6:65)

>	Internet	Protocol	Version 4,	Src:	192.168.1.7,	Dst:	157.7.107.210	

> Transmission Control Protocol, Src Port: 53275, Dst Port: 80, Seq: 1, Ack: 1, Len: 560

> Hypertext Transfer Protocol


Ethernet: 14Byte	IP:20Byte		
0000 10 4b 46 86 d6 65 28 ee 52 09 d6 7d 08 00 45 00 0010 02 58 15 30 40 00 80 66 18 e7 c0 a8 01 07 9d 07 0020 65 d2 d0 1b 00 50 38 57 b9 9e 16 b5 52 a1 50 18	ICP:20Byte		^
0030 02 01 e5 e0 00 07 45 54 20 27 20 48 54 54 50 0040 2f 31 2e 31 0d 0a 48 6f 73 74 3a 20 6d 61 6e 61 0050 6b 61 6e 26 65 74 0d 0a 43 6f 6e 65 63 74	/1.1. Ho st: mana kan.net. Connect		
0060 69 6f 6e 3a 20 6b 65 70 2d 61 6c 69 76 65 0d 0070 0a 55 70 67 72 61 64 65 2d 49 6e 73 65 63 75 72 0080 65 2d 52 65 71 75 65 73 74 73 3a 20 31 0d 0a 55 0090 73 65 72 2d 41 67 65 6e 74 3a 20 4d 6f 7a 69 6c	e-Reques ts: 1U		
😑 🝸 Transmission Control Protocol (tcp), 20 バイト		パケット数: 20・表示: 20 (100.0%) プロ:	ファイル: Default

"IPv4" and "IPv6" 1-5.

Difference in number of bits used for address


•

IPv4 Identify with 32bit. \Rightarrow 2 to the 32nd power, so "4,294,967,296 (about 430 million)"

(340282366920938463463374607431768211456)

IPv6 Identify with 128bit. \Rightarrow 2 to the 128th power, so "3.4 x 10 to the 32nd power"

1-6. IP data format (Excerpt from the prescribed RFC)

IPv4 RFC791

2 0123456 90123456789012345678901 Version IHL | Type of Service Total Length Identification |Flags| Fragment Offset Time to Live | Protocol Header Checksum Source Address 32bit Destination Address 32bit ******* Options Padding +-+-+-+-+-+-

The basic size is 20 bytes (1 line is 32bit, so 4 bytes)

[Optional] variable in size depending on the required options.

IPv6 RFC8200

Source Address

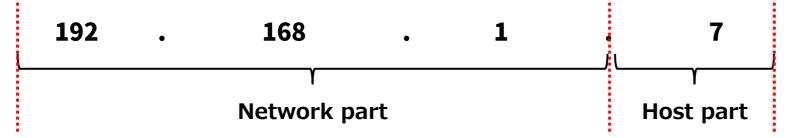
32bit * 4line = 128 bit

> 32bit * 4line = 128 bit

Destination Address

The basic size is 40 bytes (1 line is 32bit, so 4 bytes)

2. Types and allocation of IP addresses


2-1. Classes and CIDR

2-2. IP address management organization and allocation

2-3. Global and private

2-4. Internet communication with a private IP address

2-1. Classes and CIDR

Class: As shown in the table below, build a network in units of a predetermined size 📫 mor

l nun	nber of t	erminal

number of terminals		Network part	Class address range	
	about 16 million	8 Bit	$0.0.0.0 \sim 127.255.255.255$	Class A
/	about 65000	16 Bit	128.0.0.0 ~ 191.255.255.255	Class B
/	254	24 Bit	192.0.0.0 ~ 233.255.255.255	Class C
	-	(for multicast and reservation)	224.0.0.0 ~ 255.255.255.255	Class D/E

CIDR (Classless Inter-Domain Routing) : Free use regardless of class

This is commonly used

Set a subnet mask to clearly separate the network part and the host part.

example) 1.0.16.0 / 20 192.168.10.0 / 23

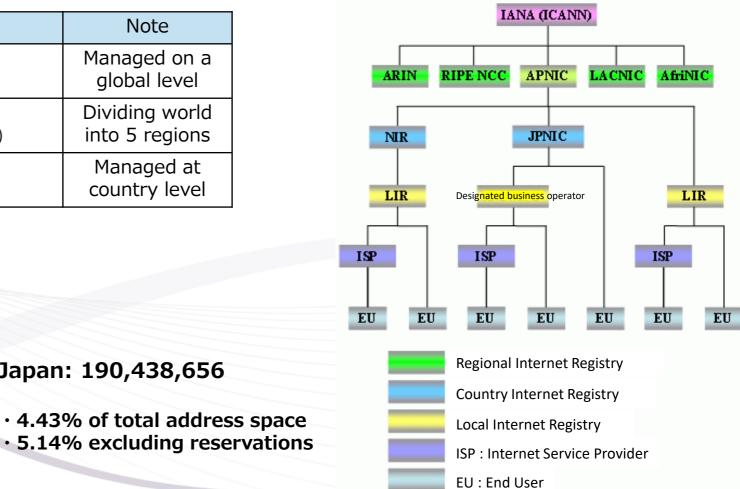
2-2. IP address management organization and allocation

- Strictly manage IP addresses so that they do not overlap around the world
- In Japan, they are distributed and managed in the following order, so that the location can be specified. IANA \rightarrow APNIC \rightarrow JPNIC \rightarrow ISP \rightarrow End user

Japan: 190,438,656

IP address management organization

Management organization struct	ure
--------------------------------	-----


Region	Management organization	Note
world	IANA (Internet Assigned Numbers Authority)	Managed on a global level
Asia	APNIC (Asia-Pacific Network Information Centre)	Dividing world into 5 regions
Japan	JPNIC (Japan Network Information Center)	Managed at country level

Assignment to Japan

https://ipv4.fetus.jp/jp

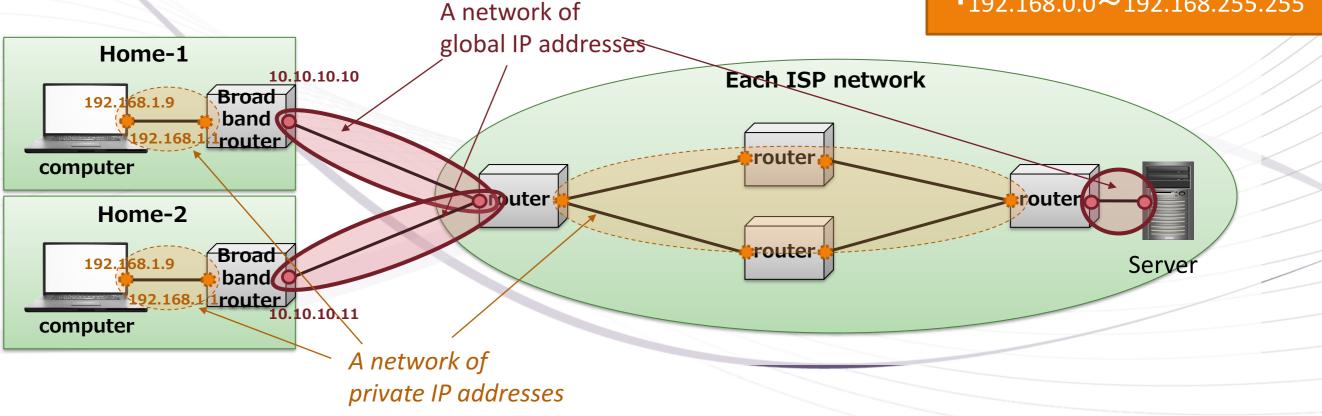
CIDR	IPアドレス	割り振り日	レジストリ		
1.0.16.0/20	1.0.16.0 - 1.0.31.255	2011/04/12	APNIC		
1.0.64.0/18	1.0.64.0 - 1.0.127.255	2011/04/12	APNIC		
1.1.64.0/18	1.1.64.0 - 1.1.127.255	2011/04/12	APNIC		
1.5.0.0/16	1.5.0.0 - 1.5.255.255	2011/04/01	APNIC		
1.21.0.0/18	1.21.0.0 - 1.21.63.255	2010/06/16	APNIC		
1.21.64.0/19	1.21.64.0 - 1.21.95.255	2010/06/16	APNIC		
1.21.96.0/20	1.21.96.0 - 1.21.111.255	2010/06/16	APNIC		
1.21.112.0/20	1.21.112.0 - 1.21.127.255	2010/06/16	APNIC		
1.21.128.0/20	1.21.128.0 - 1.21.143.255	2010/06/16	APNIC		

 $\left| \left(\left(\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right) \right\rangle \right\rangle$

https://www.nic.ad.jp/ja/ip/admin.html

Global and private IP addresses 2-3.

• Global IP address

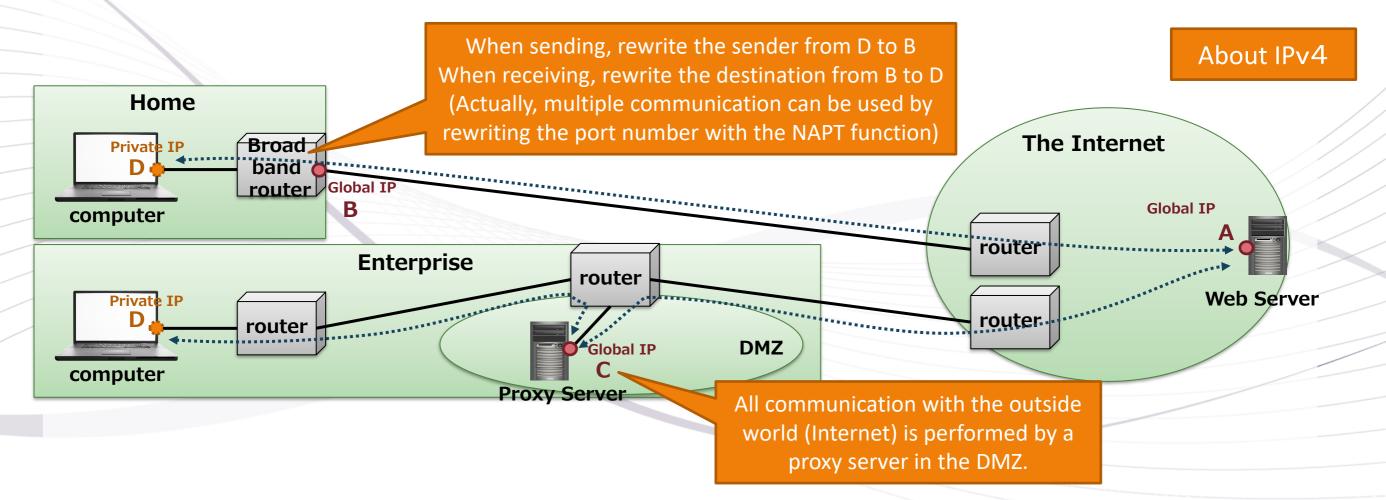

Unique address in the world (can be identified from all over the world, so it is used for internet communication)

Private IP address

An address that is used repeatedly in a network in each home or company. (It cannot be specified from all over the world, but it is unique within the network without duplication))

(Private IP address Range)

- **•**10.0.0.0 **~**10.255.255.255
- •172.16.0.0~172.31.255.255
- •192.168.0.0 ~192.168.255.255

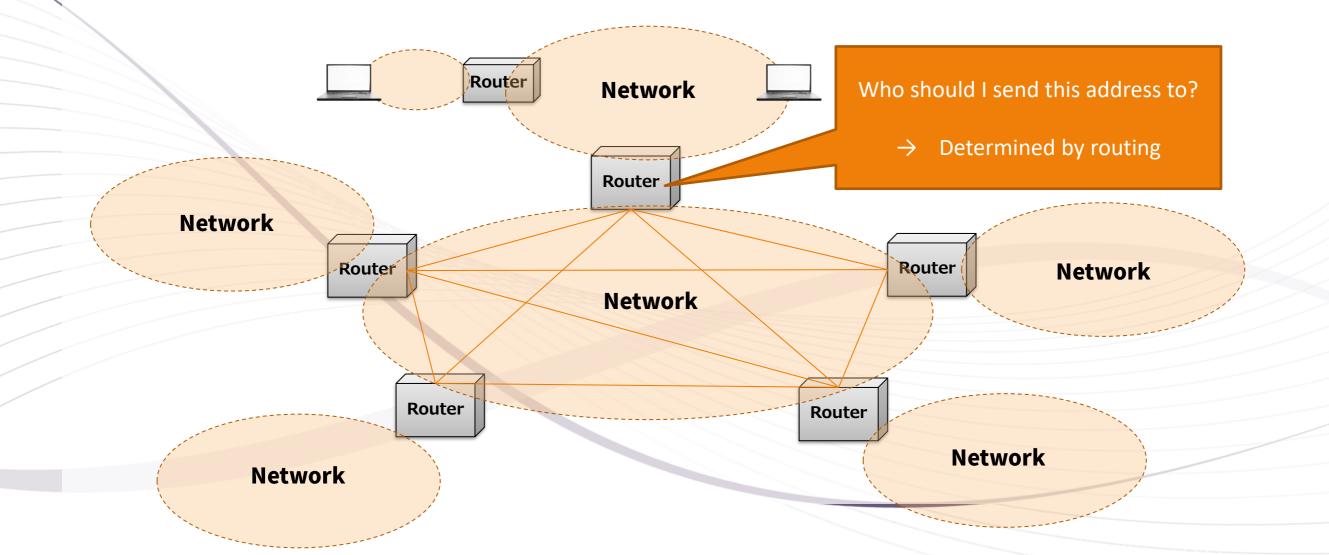

2-4. Internet use with private IP address

Use of private IP at each home

Communication by replacing the global IP address with the private IP address on the broadband router.

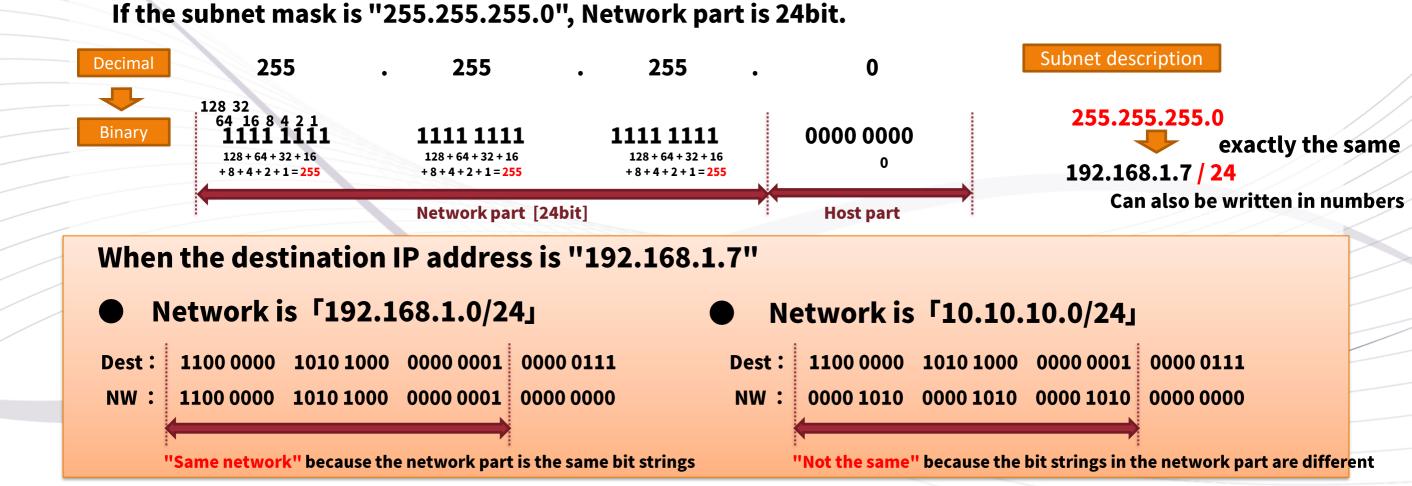
Use of private IP by each company

The proxy server in the DMZ relays and communicates with the outside.

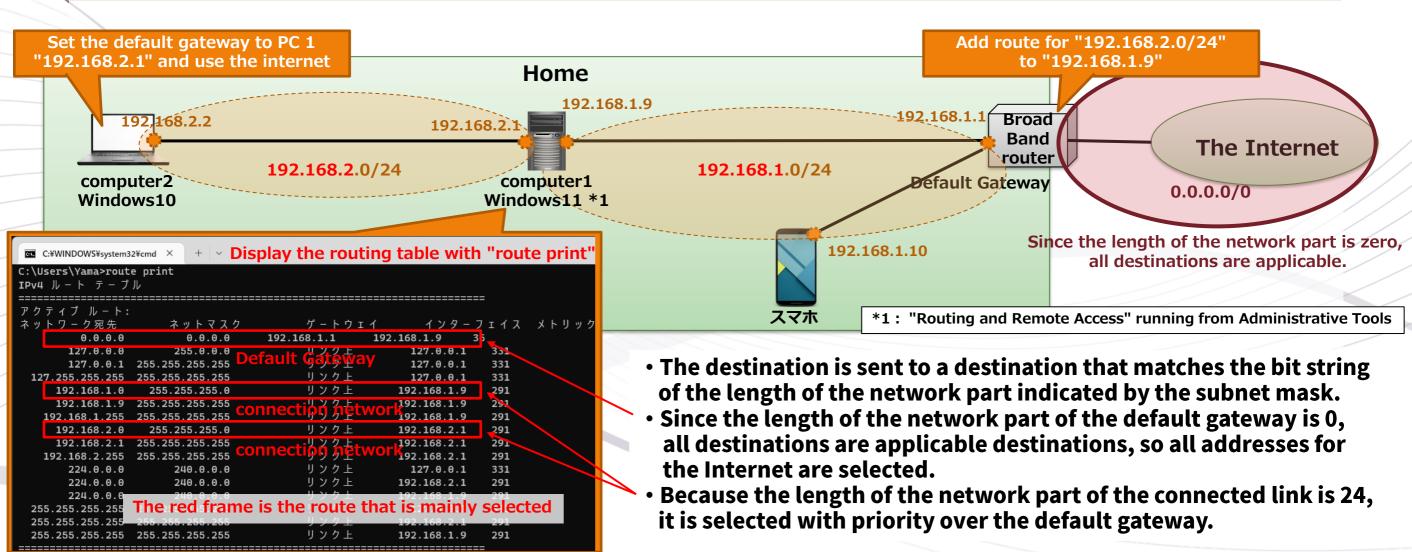


3. Mechanism of routing

- 3-1. What is routing?
- 3-2. Subnet mask and Default Gateway
- 3-3. Decision by routing table
- 3-4. Priority of routing decisions
- **3-5. Internet routing**


3-1. What is routing?

The destination address determines to whom in the connected network to send.


3-2. Subnet mask and Default Gateway

- The subnet mask represents the length of the network part (represents the size of the network)
 The same network is determined by whether the network part has the same bit string
- The network part of the default gateway is set to zero, so "all addresses are applicable"

3-3. Decision by routing table

- Terminals such as personal computers and routers have routing tables for resolving destinations.
- For the destination address, find the destination with the same network address from the routing table.
- Send the packet to the destination (Next-Hop) of the relevant network address.

3-3. Priority of routing decisions

- Routing is determined by multiple factors, but there is a priority.
- Priority is as follows

Priority 1: Longest Match

The length of the network part (the length of the subnet mask) has the highest priority.

Example) When there are 1 and 2 in the routing table

The destination "192.168.1.1" corresponds to both of the following, but length 24 1 is selected

	Network Address	Next-Hop	
1	192.168.1.0/24	192.168.1.1	
2	192.168.0.0/ <mark>16</mark>	192.168.1.11	

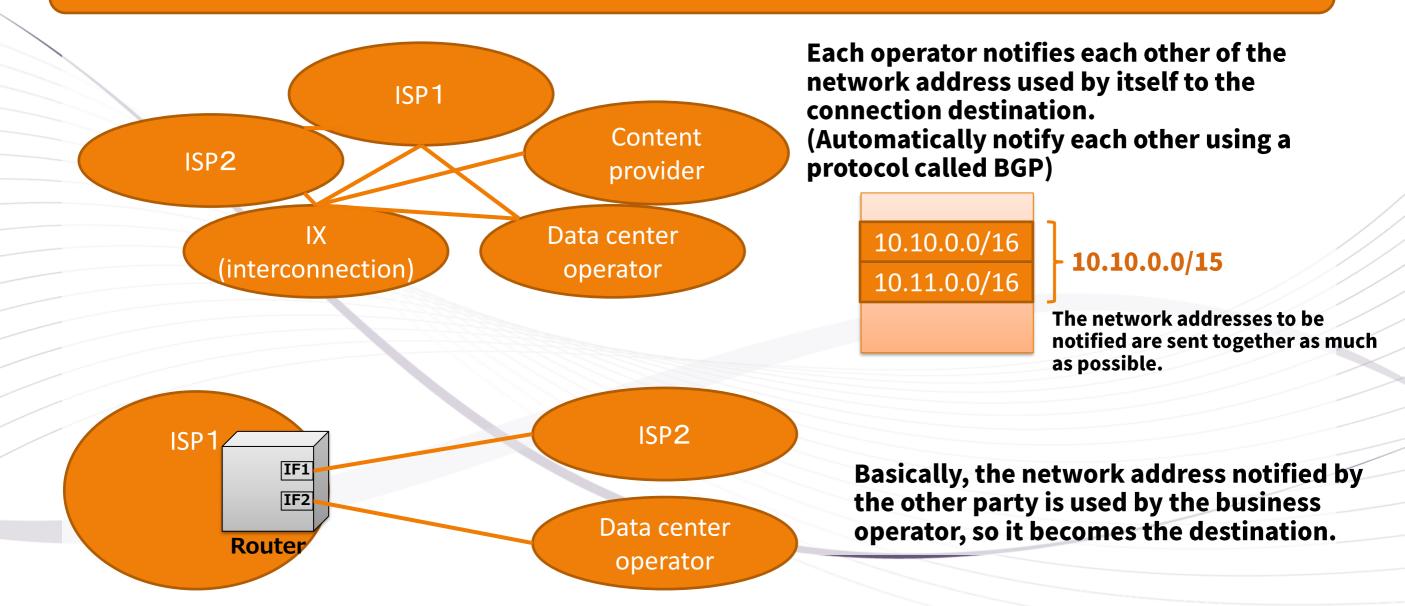
This route with a longer network part is selected

Priority 2: Administrative distance It is decided which route type to prioritize

• Static route Route manually set by the operator

• Dynamic routing Automatically update route information using a routing protocol Dynamically update route information by notifying your route to the other party

《 Standard setting 》 (Excerpt)


Route information source		Administrativedistance value
Direct connect	ion (same network)	0
Static route (manual setting)		1
	BGP (external)	20
Dynamic	OSPF	110
Routing	RIP	120
	BGP (internal)	200

Priority 3: Metric

Used when manually setting the priority or operating the priority of the route based on the number of hops or cost.

3-4. Internet routing

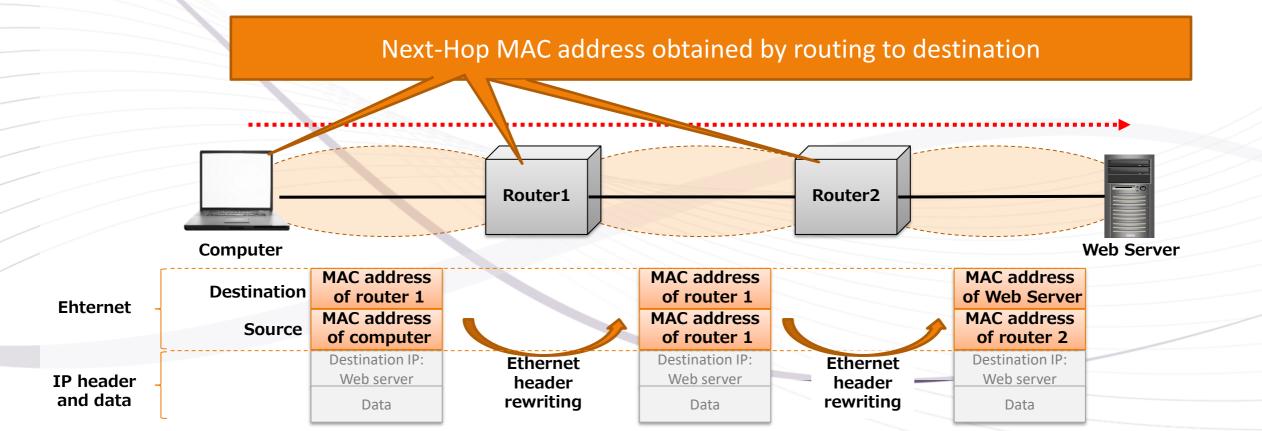
Construct routing by exchanging network addresses in use between operators

4. Ethernet and MAC address

- 4-1. What is Ethernet?
- 4-2. Sending to Nex-Hop and Mac address
- 4-3. MAC address resolution mechanism "ARP"
- 4-4. Summary of transmission processing on Ethernet terminals

4-1. What is Ethernet?

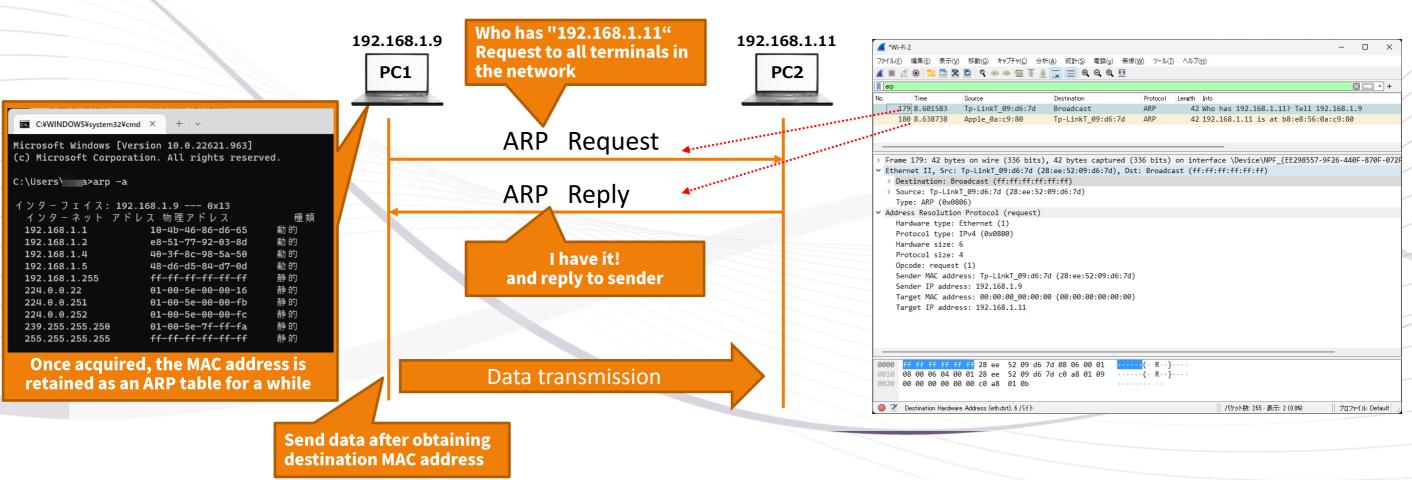
- Ethernet is a communication technology of IEEE, layer 2 data link layer technology
- Ethernet uses MAC addresses for terminal identification.


77/I/LD 編集(E) 表示(Y) 移動(G) キャブチャ(C) 分析(A) 統計(S) 電話(Y) 無線(W) ツール① ヘルブ(H) ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	 Ethernet standard Wired: LAN cable, coaxial, optical cable Standardization IEEE802.3 Wireless: Wi-Fi Standardization IEEE802.11 ac/a/n/g/b
<pre>Frame 48: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface \Device\NPF_{EE298557-9F26-440F-{ Ethernet.IIScc.In-LinkJ_09:d6:7d.(28:ee:52:09:d6:7d), Dst: Mitsubis 86:d6:65 (10:4b:46:86:d6:65) Destination: Mitsubis_86:d6:65 (10:4b:46:86:d6:65) Dest Mac Address Source: Tp-LinkT_09:d6:7d (28:ee:52:09:d6:7d) Src Mac Address Type: IPv4 (0x0800) Internet Protocol Version 4, Src: 192.168.1.9, Dst: 23.59.13.91 0100 = Version: 4 0101 = Header Length: 20 bytes (5) Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT) </pre>	 Positioning of the protocol stack Equivalent to the physical to data link layers of the OSI reference model (the layer below the IP address)
Total Length: 60 Identification: 0x8933 (35123) > Flags: 0x00 IDENTIFICATION: 0x8933 (35123)	Ethernet Data Format
0 0000 0000 = Fragment Offset: 0	
Time to Live: 128 Protocol: ICMP (1) Header Checksum: 0xcb46 [validation disabled] [Header_checksum_status: Unverified]	Destination Source Type IP Data
Source Address: 192.168.1.9 Src IP Address	
Destination Address: 23.59.13.91 Dest IP Address	6Byte 6Byte 2Byte
Type: 8 (Echo (ping) request) Code: 0 Data	
Checksum: 0x4d etfernet 14Byte	140.44
0000 10 45 86 46 55 28 ee 52 09 d6 7d 08 00 •KF···e(· R··}··E· 0010 00 32 89 33 00 00 80 01 c5 46 c0 a8 01 09 17 3b -<<-3····;	14Byte
0020 002	 What is a MAC address? A 6-byte address assigned to the interface.
😑 🍸 Destination Hardware Address (eth.dst), 6 バイト 🛛 パケット数: 189・表示: 8 (4.2%)・欠落: 0 (0.0%) 🛛 ブロファイル: Default 🧝	Given by the manufacturer.

4-2. Sending to Nex-Hop and Mac address

Send to the MAC address of the next-hop destination terminal acquired by routing.

Communication from personal computer to web server


Terminals and routers create and send Ethernet headers to the Next-Hop MAC addresses obtained by routing. Therefore, every time it goes through a router, the Ethernet header is rewritten and communicated.

4-3. MAC address resolution mechanism "ARP"

Since IP addresses are obtained in routing, a mechanism to obtain MAC addresses is required.
The destination MAC address is obtained using ARP from the IP address obtained by routing.

When PC 1 communicates with PC 2

4-4. Summary of transmission processing on Ethernet terminals

Processing from determination of destination to data transmission.

Determine the destination (Next-Hop) from the routing table.

Acquire the MAC address of the destination (Next-Hop) by ARP.

Add Ethernet header, construct data and send.