[Infrared transmission LED version]

Smart Remote Controller production

- Understanding Infrared Transmitting LEDs and Transistors
- Program the remote control signal (38 kHz modulation)

Table of Contents <<Infrared transmission LED>>

- 1. Overview 1-1. Overall flow of smart remote controller production
 - 1-2. Items to use
 - 1-3. Development environment Arduino
- 2. Infrared transmitting LED and transistor
 - 2-1. Infrared transmission LED
 - 2-2. remote control signal
 - 2-3. Resistance value calculation (infrared transmission LED)
 - 2-4. transistor
- 3. circuit diagram
- 4. Wiring diagram
- 5. Software
- 6. operation check

1-1. Overall flow of Smart Remote Controller production

No	Item	Content		Soft	Note
1	Overview	Overall flow, system configuration, items used, reasons for selection, development environment, etc.			
2	LED	Learn the basics for beginners. We will make "L blinking" that lights up and blinks the LED.		0	Delivered in another video
3	Infrared receiving sensor	Description of infrared receiving sensor Schematic to Wiring, Software	Description of infrared receiving sensor Schematic to Wiring, Software		
4	Infrared transmission LED	Infrared transmission LED description Schematic to Wiring, Software	0	0	this time this video
5	LED operation with smartphone(at home)	We will create software to operate the LED with smartphone. (Web server function, SPIFFS operation)	-	0	
6	Remote control with smartphone(at home)We will create software that to operate the remote control with smartphone indoors. (Button name, signal save/read)		-	0	Delivered in another video
7	Operate from outside And AI speaker cooperation	We will create software to operate the remote control with smartphone from the outdoors, and AI speaker cooperation.	-	0	

1-2. List of Parts

Can be downloaded from the Hobby-IT site <<Overview>> page

NO	Item	quanti	Image	Item	URL(Japanese Shop)	Price(yen)	Note	
1	ESP32 development board	1		ESP32-DevKitC-32E ESP32-WROOM-32E development board 4MB	https://akizukidenshi.com/catalo g/g/gM-15673/	1600	19Pin x 2 rows	
2	Breadboard 6 hole [EIC-3901]	1		Breadboard 6 hole plate EIC-3901	https://akizukidenshi.com/catalo g/g/gP-12366/	460		
3	Resistor 10 Ω	3	AUA	Carbon resistor (carbon film resistor) 1/2W 10Ω (100 pieces)	https://akizukidenshi.com/catalo g/g/gR-07795/	100	For infrared transmission LED	
4	Resistor 200 Ω	2	Aller	Carbon resistor (carbon film resistor) 1/2W 200Ω (100 pieces)	https://akizukidenshi.com/catalo g/g/gR-07807/	100	For green LED and transistor	
5	Green LED	1		3mm yellow-green LED 570nm 70 degrees OSG8HA3Z74A	<u>https://akizukidenshi.com/catalo</u> g/g/gl-11637/	10	For status displa	ау
6	Infrared receiving sensor	1		Infrared remote control receiver module OSRB38C9AA (2 pieces)	https://akizukidenshi.com/catalo g/g/gl-04659/	100		
7	Infrared transmission LED	3		5mm infrared LED 940nm OSI5LA5113A gray (10 pieces)	https://akizukidenshi.com/catalo g/g/gl-12612/	100	For infrared transmiss	ion LED
8	Transistor	1		Transistor 2SC2655L-Y-T9N-B 50V2A (10 pieces included)	https://akizukidenshi.com/catalo g/g/gl-08746/	130	For infrared transmiss	ion LED
9	Bread board Jumper	1	the care	Breadboard jumper wire 14 types x 5	https://akizukidenshi.com/catalo g/g/gP-02315/	300		
total							Postage +500 yen ree	quired

1-3. the development environment "Arduino"

2-1. Infrared transmission LED

(Ta=25°C)

The infrared transmission LED "OSI5LA5113A" is available with a forward voltage of 1.35V and a forward current of 100mA.

"OSI5LA5113A" Data Sheet

Absolute Maximum Rating	(Ta=25°C)		
Item	Symbol	Value	Unit
DC Forward Current	$I_{\rm F}$	100	mA
Pulse Forward Current#	$I_{\rm FP}$	1000	mA
Reverse Voltage	VR	5	v
Power Dissipation	PD	180	mW
Operating Temperature	Topr	-30 ~ +85	°C
Storage Temperature	Tstg	-40~ +100	°C
Lead Soldering Temperature	Tsol	260°C /5sec	-

Pulse Width ≤ 100 us. Duty $\leq 1/100$

Tulse Width ≥ 100us, Duty ≥ 1/100

Electrical -Optical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
DC Forward Voltage*1	VF	IF=100mA	-	1.35	1.6	v
DC Reverse Current	IR	V _R =5V	-	-	10	μΑ
Peak Wavelength*2	λρ	I=50mA	-	940	-	nm
Radiant Power*3	Ро	IF=50mA	-	12	-	mW
Radiant Intensity*4	Ie	IF=50mA	35	55	-	mW/Sr
50% Power Angle	201/2	I _F =50mA	-	15	-	deg

*1 Tolerance of measurements of forward voltage is +0.1V

*2 Tolerance of measurements of peak wavelength is +1nm

*3 Tolerance of measurements of Radiant Power is ±15%

*4 Tolerance of measurements of Radiant Intensity is ±15%

THE ELECTROMAGNETIC SPECTRUM *1

*1:https://k-comfort.co.jp/post-knowledge-infrared-1/

【caution】
The longer leg is the anode
and the positive is wired.

2-2. Remote control signal

0 and 1 of the remote control signal are represented by lengthening the time of HIGH or LOW. The actual transmission signal is modulated with a 38KHz signal.

2-3. Resistance value calculation (for Ir LED)

2-4. Transistor

Amplification factor hFE is about 100 times

3. Circuit diagram

By setting IO23 of ESP32 to OUTPUT and passing current through the base of the transistor, the large current flowing between the collector and emitter is controlled to turn ON/OFF the infrared transmission LED.

4. Wiring diagram

Note) The LED and infrared reception sensor have already been wired in the previous video, so we will wire them additionally.

5-1. Software

Note) Since we have learned the basics in the LED section, we will understand the software part related to the infrared transmission LED.

💿 IrSend Arduino 1.8.19	- • ×
ile <u>E</u> dit <u>S</u> ketch <u>T</u> ools <u>H</u> elp	
	n an
IrSend §	
1 //***********************************	
2 // Ir Send Ver2023.1.22	
3 // Arduino board : ESP32(Arduino core for the ESP32) by Espressif Systems ver 2.0.6	
4 // Written by IT-Taro	
5 //***********************************	
6	
7 const byte IR S PIN = 32; // Transmission control with GP1032	Set here the remote control signal acquired by the
8 // Set transmission data	infrared receiving sensor during electronic work
<pre>9 unsigned short irData[] = { 303,1/1,(omission),43,44 }; // ### [Data rewrite required]</pre>	
10	
12 void setun() /	
13 Serial.begin(115200):	
14 Serial.println():	Setup function
15 pinMode (IR S PIN, OUTPUT);	Charting the equipline miter and IO22 subrut estimat
16	Starting the serial monitor and 1032 output settings
17 // Execute function to transmit infrared	Execution of the infrared transmission function "irSend"
18 irSend ();	
<pre>19 Serial.println("SndOK");</pre>	
20 }	
21	
22 void loop() {	Loop function
23	No processing
24 }	No processing
25	
27 word inSend () (
28 // Local variable definition	
29 unsigned short irCount = 0: // Number of HIGH and LOW signals	
30 unsigned long l now = 0; // Hold transmission start time	
<pre>31 unsigned long sndt = 0; // Elapsed time from transmission start</pre>	
32 // Calculate the number of HIGH and LOW signals	
<pre>33 irCount = sizeof(irData) / sizeof(irData[0]);</pre>	
2/ // homina transmission start time	
ESP32 Dev Module, FTDI Adapter, Disabled, Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS), 240MHz (WiFi/BT), QIO, 8	30MHz, 4MB (32Mb), 921600, Core 1, Core 1, None, Disabled on COM3

5-2. Software

5-3. Software

Data acquired by the infrared receiving sensor (time interval between HIGH and LOW)

unsigned short irData[] = { $303,171,47,41,46,41,46,128,46,128, \cdot \cdot \cdot (\text{ omit }) \cdot \cdot \cdot ,44,43,44$ };

1 2 3 4 5 6 7 8 9 10 ••• (omit) ••• 81, 82,83 \Rightarrow 83 HIGHs and LOWs

number of HIGH and LOW

irCount = sizeof(irData) / sizeof(irData[0]);

Get numbers separated by commas. In other words, the number of HIGH and LOW

Infrared transmission LED control digitalWrite(IR_S_PIN, <u>!(i&1))</u>;

0: no infrared transmission1: Infrared is transmitted

"i" is processed in order from 0 to (irCount-1).

"i&1" is a bitwise operation, and since it is an AND operation, even numbers are 0 and odd numbers are 1.

"!(i&1)" inverts the above, so even numbers are 1 and odd numbers are 0. Therefore, it will be sent when the number is even and not when the number is odd.