Thorough understanding of "AI" in $\mathbf{1 0}$ minutes

From "The Basics of AI" to "Deep Learning"

Table of Contents

1. What is AI?
2. History of Al
3. Image of Al until the second boom (until the 1980s)
4. Meaning and relationship between "machine learning" and "deep learning"
5. Types of Al learning
6. Machine learning Example 1) Simple linear regression

Example 2) Support Vector Machine
Example 3) Perceptron (artificial neuron)
Example 4) Neural network
Example 5) Neural network "deep learning"

1. What is AI?

Artificial intelligence (AI) is the artificial reproduction of part of human intellectual behavior using software.

In particular?
Is it possible to say that "what a machine judges even once is an Al "?

In extreme terms,
"A rice cooker that cooks rice at 5 o'clock" judges that it is 5 o'clock, In general, it is not called an Al rice cooker.

So, how much judgment do you have to make to say that it is an Al home appliance?

2. History of AI

Boom	Period	keyword	machine learning	example
first boom	1950s-1960s	logic	\times	puzzle, maze game
second boom	1980s	knowledge	Δ	robots, expert systems
third boom	$2010-$	deep learning		

The current tertiary boom spread at once in 2012 when Professor Jeffrey Hinton's team at the University of Toronto, Canada, demonstrated overwhelming accuracy using deep learning and won the image recognition contest in 2012. rice field.

3. Image of AI until the second boom (until the 1980s)

"Expert system" image
Humans (experts) set rules (knowledge) for judgment. The more detailed the rules are set, the higher the accuracy, but it is necessary for people to create all the rules.
for example

4. Meaning and relationship between "machine learning" and "deep learning"

A I

Part of human intellectual behavior is artificially reproduced using software.

Machines themselves learn (big) data and formulate rules and patterns

Automatic extraction of data features using neural networks, etc.

5. Types of Al learning

Presence or absence of a teacher	content	use	technique
Supervised learning	Giving a set of problems and correct answers to the machine to learn	classification Regression (prediction)	support vector machine deep learning (neural network)
Unsupervised learning	Let the machine learn only the problem, and the AI itself will find and learn the characteristics etc.	Clustering (Grouping)	K-means self-organizing map deep learning
		data reduction	Principal Component Analysis (PCA) deep learning
Reinforcement learning	Al tries itself, gives rewards, and learns to get the maximum reward	shogi and go motor control and maze exploration	Q-learning actor critic

6-1. Machine learning Example 1) Simple linear regression

Simple linear regression is a linear function $(y=a x+b)$ that can express the data of two variables x and y

There is data that can be represented by a straight line, and a relational expression is sought.
error is 「Q1 = y1 - (ax1 + b)」

Since there is an error on the top and bottom, sum the squares

Sum of errors : Qt = Q1 + Q2 + Q3 + ...
$=\{y 1-(a x 1+b)\}^{2}+\{y 2-(a x 2+b)\}^{2}+\{y 3-(a x 3+b)\}^{2}+\ldots$

Relational expression that
minimizes the sum of errors

The parameters a and b are determined so that the total error (objective function) $Q t$ is minimized.

$$
\Rightarrow \text { least squares method }
$$

Finding a relational expression that minimizes (or maximizes) the

6-2. Machine learning

Example 2) Support vector machine
Learn theory with two classes (classifiable into two) of linear support vector machines (classifiable by straight lines). Support Vector Machine determines the regression line $[y=a x+b]$ by maximizing the margin.
(vector: point, support vector: point closest to boundary)

Normally, it cannot be divided neatly, so it is calculated with a penalty

Determine the parameters of " a " and " b " so that the margin " r " of the closest point (support vector) is maximized.

Determine the parameters "a" and "b" so that the penalty is minimal and the margin " r " is maximal.

6-3. Machine learning

Example 3) Perceptron (artificial neuron)

Artificial neurons (perceptrons) modeled on human brain neurons

参考: https://aitokuconsult.hatenablog.com/entry/neuralnetwork

Ex) When each input is $1,2,3$, all weights are 1 , and the threshold is 5 $(1 * 1)+(2 * 1)+(3 * 1)>5$
$6>5$
\qquad correct, so the output is " 1 "

There are many functions in the output
(1) Activation function: Step function

(3) Activation function: Ramp function

Simple and easy to calculate. Commonly used in the middle class.

6－4．Machine learning

Example 4）Neural network

In order to understand the neural network，the intermediate layer（hidden layer）learns with a single layer model （Neural network that judges O＂circle＂and \times＂cross＂of $3 * 3$ images）

Each neuron weights the input and outputs the result calculated by the threshold

【 Middle layer formula】

a1＝（ x1＊w11 ）＋（ x2＊w12 ）$\cdots+(x 9$＊w19）－ 01 a2 $=($ x1＊w21 $)+(x 2$＊w22 ）$\cdots+(x 9 * w 29)-\theta 2$ a3＝（ x1＊w31 ）＋（ x2＊w32 ）$\cdots+(x 9$＊w39 ）－ 03 $y 1=\sigma(a 1), y 2=\sigma(a 2), y 3=\sigma(a 3)$
σ is a sigmoid function

【Output layer formula】

$$
\begin{aligned}
& \mathrm{z} 1=\left(\mathrm{y} 1^{*} \mathrm{w} 11\right)+(\mathrm{y} 2 * \mathrm{w} 12)+(\mathrm{y} 3 \text { * w13) - } 01 \\
& \mathrm{z2}=\left(\mathrm{y} 1^{*} \mathrm{w} 11\right)+(\mathrm{y} 2 * w 22)+(\mathrm{y} 3 * w 23)-\theta 2
\end{aligned}
$$

6-4. Machine learning

Example 4) Neural network

6-5. Machine learning

Example 5) Neural network "deep learning"

Deep learning
Convolutional neural network

: Neural network with two or more intermediate layers
: A method of learning by subdividing the intermediate layer

Example) Convolutional neural network

Input layer
$8 * 8$ pixels, so 64 neurons

Convolutional layer 1 32 groups are divided into 36 subdivisions in a $3 * 3$ frame

Convolutional layer 2
64 groups are divided into 16 subdivisions in a 3*3 frame

MAX pooling layer Reducing 4*4 to $2 * 2$ frame for feature extraction that is resistant to deviation

Max pooling image

Leave only the maximum value of each frame

Output layer
Judge each element by judging with a threshold from the input

