Motion Sensor survey (electronic work) [Which is the 1st place?]

- Understand the mechanism of motion sensors and programming
- Practical data of electronic work used in ESP32

Table of Contents

1. Motion detector mechanism
2. List of Motion detectors to be surveyed
3. ESP32 port
4. Performance of each sensor
5. Simple usage survey of single sensor type
6. circuit
7. programming
8. Measurement result

1. Pyroelectric infrared (human) sensor

[Reference URL]

https://www.murata.com/ja-jp/products/sensor/infrared/overview/basic/about

THE ELECTROMAGNETIC SPECTRUM

*1:https://k-comfort.co.jp/post-knowledge-infrared-1/

Infrared

(A kind of electromagnetic wave, same as light)

All objects from hot to cold emit infrared radiation
(Wavelength varies depending on temperature)

Infrared wavelength changes due to temperature change of the object

Pyroelectric element changes temperature by infrared rays

Change in sensor voltage output

2-1. Motion sensor to investigate

Selection criteria (IT Taro survey) -3.3V/5V compatible

- Selected from the lowest price of the same type

2-2. Motion sensor to investigate (Summary of specifications)

We will check the differences between "modularized products with added resistance", "integrated lens", and "Sensor only".

Type	Content	Price	How to Use	Note
Modularization [SB412A, Grove-PIR, M5Stack-PIR]	Products in which capacitors and resistors are integrated	Equivalent (Same as sensor only, because lens and amplifier are required)	readily available (3V output when sensing) Output terminal can be used as it is	
Integrated lens [EKMC1601112, EKMC1603111]	Products integrated with lenses		readily available (3 V output when sensing) Pull down the output terminal and use it	
Sensor only [D203B, AKE-1, D205B]	Sensor only		Circuit required (not readily available) Amplified and detected by an operational amplifier	Purchase and install a Fresnel lens separately

2-3. Fresnel lens attached (sensor only)

For sensor-only products, the "Fresnel lens" must be purchased separately, attached, and measured.

Fresnel lens S9001

[manufacturer]
Nanyang Senba Optical\&Electronic Co.,Ltd.
■ Size: 12.7mmФ
■ Focal length: 6 mm

- Detection distance: 5 m

■ Horizontal viewing angle: 100°
■ Materials: HDPE (high-density polyethylene)
■ Price: 40 yen / piece

A lens that fits the sensor for a detection distance of 5 m
I installed it on D203B, AKE-1, and
https://akizukidenshi.com/catalog/g/gP-09003/
D205B, and all three were
the perfect size.

3-1. ESP32 port

- ESP32 port configuration

- ADC (Analog to Digital Converter) terminal [Voltage can be measured]
- Two ADC circuits are installed.
- Attenuation of 11 dB is set as standard, so measurement from 0 to 3.3 V is possible.
- The resolution is 9 to 12 bits. Since it is 12 bit by default, it is output in 0 to 4095.
(It is also possible to output the voltage-converted value. This time, we will use this function.)
- Wi-Fi is not available when using ADC2

https://kohacraft.com/archives/202202091047.html

- GPIO terminal

An abbreviation for General Purpose Input/Output, this is a general-purpose I/O port with normal terminals.
For the 3 V voltage output type, HIGH/LOW identification is sufficient, so use this GPIO terminal.

3-2. ESP32 input terminal

Espressif Official ESP32
https://www.espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
5. Electrical Characteristics
5.1 Absolute Maximum Ratings

Stresses beyond the absolute maximum ratings listed in the table below may cause permanent damage to the device. These are stress ratings only, and do not refer to the functional operation of the device that should follow the recommended operating conditions.

Table 11: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDDA, VDD3P3, VDD3P3_RTC, VDD3P3_CPU, VDD_SDIO	Voltage applied to power supply pins per power domain	-0.3	3.6	V
$\mathrm{I}_{\text {output }}{ }^{*}$	Cumulative IO output current	-	1,200	mA
$\mathrm{~T}_{\text {store }}$	Storage temperature	-40	150	${ }^{\circ} \mathrm{C}$

*The chip worked properly after a 24 -hour test in ambient temperature at $25^{\circ} \mathrm{C}$, and the IOs in three domains (VDD3P3_RTC, VDD3P3_CPU, VDD_SDIO) output high logic level to ground.

Input HIGH/LOW judgment of ESP32

O-Pin

Maximum input voltage
Table 13: DC Characteristics ($3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$)

Symbol	Parameter		Min	Typ	Max	Unit
$\mathrm{C}_{\text {IN }}$	Pin capacitance		-	2	-	pF
$\mathrm{V}_{\text {IH }}$	High-level input voltage		$0.75 \times \mathrm{VDD}^{1}$	-	VDD ${ }^{1}+0.3$	V
$\begin{aligned} & \mathrm{V}_{I L} \\ & \mathrm{~V}_{I H} \end{aligned}$	Low-level input voltage High-level input current		$\begin{aligned} & -0.3 \\ & =0-1 \end{aligned}$	$:$	$0.25 \times V_{D D}$	V-
$\mathrm{I}_{\text {IL }}$	Low-level input current		-	-	50	nA
$\mathrm{V}_{\text {OH }}$	High-level output voltage		$0.8 \times$ VDD 1	-	-	\checkmark
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		-	-	$0.1 \times \mathrm{VDD}^{1}$	V
l_{OH}	High-level source current $\left(\mathrm{VDD}^{1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}>=2.64 \mathrm{~V}\right.$, output drive strength set to the maximum)	VDD3P3_CPU power domain ${ }^{1,2}$	-	40	-	mA
		VDD3P3_RTC power domain ${ }^{1,2}$	-	40	-	mA
		VDD_SDIO power domain ${ }^{1,3}$	-	20	-	mA
${ }^{\text {l }}$ L	Low-level sink current $\left(\mathrm{VDD}^{1}=3.3 \mathrm{~V}, \mathrm{~V}_{O L}=0.495 \mathrm{~V},\right.$ output drive strength set to the maximum)		-	28	-	mA
$\mathrm{R}_{P U}$	Pull-up resistor		-	45	-	$\mathrm{k} \Omega$
$\mathrm{R}_{P D}$	Pull-down resistor		-	45	-	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {IL_nRST }}$	Low-level input voltage of CHIP_PU to power off the chip		-	-	0.6	V

Nos:

1. Please see Table IO_MUX for IO's power domain. VDD is the I/O voltage for a particular power domain of pins.
2. For VDD3P3_CPU and VDD3P3_RTC power domain, per-pin current sourced in the same domain is gradually reduced
from around 40 mA to around $29 \mathrm{~mA}, V_{O H}>=2.64 \mathrm{~V}$, as the number of current-source pins increases.
3. For VDD_SDIO power domain, per-pin current sourced in the same domain is gradually reduced from around 30 mA to
around $10 \mathrm{~mA}, \mathrm{~V}_{O H}>=2.64 \mathrm{~V}$, as the number of current-source pins increases.

Since the input is up to MAX3.9V, it is impossible to input a 5 V signal.

4-1. SB412A

《Reference URL》

https://akizukidenshi.com/download/ds/senba/SB412A_20210413.pdf

Features and Electrical Specification

Compact size: 18*10 mm
Supply Voltage: DC3.5V $\sim 12 \mathrm{~V}$
Quiescent Current: 520 A
Voltage Output: High level signal: 3 V , Standby output is 0 V or Open-Collector Output
-
Delay time: $2.3 \mathrm{~S}-80 \mathrm{~min}$ (customized)
Blockade time:2.3S
Trigger mode: Repeatable triggered
Operation Temperature: $-20^{\circ} \mathrm{C} \sim+55^{\circ} \mathrm{C}$
Infrared sensor: dual element, low noise, high sensitivity
Detecting length: less than $5 \mathrm{~m}\left(25^{\circ} \mathrm{C}\right)$
Detecting Angle: $\leqslant 115^{\circ}$

2. Delay time adjustment

No	On-time Voltage (VDD)	On-time center Voltage (VDD)	Pull-down-Resistor (Ω) (Pull-up=1M)	Time (Td) (sec)
0	$0 \sim 1 / 32$	$1 / 64$	0 K	1.8
1	$1 / 32 \sim 2 / 32$	$3 / 64$	51 k	3.6
2	$2 / 32 \sim 3 / 32$	$5 / 64$	91 k	5.4
3	$3 / 32 \sim 4 / 32$	$7 / 64$	120 k	7.2
4	$4 / 32 \sim 5 / 32$	$9 / 64$	180 k	14.4
5	$5 / 32 \sim 6 / 32$	$11 / 64$	220 k	29
6	$6 / 32 \sim 7 / 32$	$13 / 64$	270 k	43
7	$7 / 32 \sim 8 / 32$	$15 / 64$	330 k	58
8	$8 / 32 \sim 9 / 32$	$17 / 64$	360 k	115
9	$9 / 32 \sim 10 / 32$	$19 / 64$	430 k	230
10	$10 / 32 \sim 11 / 32$	$21 / 64$	510 k	346
11	$11 / 32 \sim 12 / 32$	$23 / 64$	560 k	461
12	$12 / 32 \sim 13 / 32$	$25 / 64$	680 k	922
13	$13 / 32 \sim 14 / 32$	$27 / 64$	750 k	1843
14	$14 / 32 \sim 15 / 32$	$29 / 64$	910 k	2765
15	$15 / 32 \sim 16 / 32$	$31 / 64$	1 M	3686

4-2/4-3. EKMC1601112/EKMC1603111

Panasonic

《Reference URL》
https://akizukidenshi.com/download/ds/panasonic/vz.pdf
https://www.mouser.jp/datasheet/2/315/PANA_S_A0009105372_1-2560853.pdf

Digital output

Hem	Symbol		$\underset{(1 \mu \mathrm{~A})}{\text { EKMB1I series }}$	$\underset{(2 \mu \mathrm{~A})}{\text { EKMB12 } \square \text { series }}$	$\underset{(6 \mathrm{GHA})}{\text { EKMB13 } \square \mathrm{K} \text { ses }}$	EKMC16■ series (170 A)
Operating voltage	$\mathrm{V}_{\text {Do }}$	Max	4.OVDC			6.0VDC
		Min	2.3VDC			3.0 VDC
Current consumption (in standby/sleep mode) Note 1	I_{w}	Ave	$1 \mu \mathrm{~A}$	$2 \mu \mathrm{~A}$	$6 \mu \mathrm{~A}$	170 ${ }^{\text {A }}$
Output current (during detection period) Note 2	Iour	Max	$100 \mu \mathrm{~A}$			

Output voltage (during detection period)	$\mathrm{V}_{\text {our }}$	Min	$\mathrm{V}_{\mathrm{co}}-0.5 \mathrm{~V}$			Ambient temperature: $25^{\circ} \mathrm{C}$
Circuit stability time (when voltage is applied)	$t_{\text {mu }}$	Ave	25 seconds	-	-	Ambient temperature: $25^{\circ} \mathrm{C}$ $\mathrm{I}_{\text {ar }}=0 \mathrm{~A}$
		Max	210 seconds	10 seconds	30 seconds	EKMB series: $V_{D D}=3 V D C$ EKMC series: $V_{D D}=5 \mathrm{VDC}$

4-4. Grove - Digital PIR Motion Sensor [101020793]

《Reference URL》
https://wiki.seeedstudio.com/Grove-Digital-PIR-Sensor
https://files.seeedstudio.com/products/101020793/document/Hardware_Schematic_SCH.pdf

Programing

pinMode(digital_pir_sensor,INPUT); // set Pin mode as input digitalRead(digital_pir_sensor);

4-5. Pyroelectric infrared sensor D203B

《Reference URL》
https://akizukidenshi.com/download/ds/senba/D203B.pdf

Test Method

Amplifier 72.5 dB (about 4000 times)

Recommended Model	D203B
Encapsulation Type	TO-5
IR Receiving Electrode	$2 \times 1 \mathrm{~mm}, 2$ elements
Window Size	$5 \times 3.8 \mathrm{~mm}$
Spectral Response	$5-14 \mu \mathrm{~m}$
Transmittance	$\geqslant 75 \%$
Signal Output [Vp-p]	$\geqslant 3500 \mathrm{mV}$
Sensitivity	$\geqslant 3300 \mathrm{~V} / \mathrm{W}$
Detectivity (D*)	$\geqslant 1.4 \times 10^{8} \mathrm{cmHz}^{1 / 2} / \mathrm{W}$
Noise[Vp-p]	$<70 \mathrm{mV}$
Output Balance	<10\%
Offset Voltage	0.3-1.2V
Supply Voltage	$3-15 \mathrm{~V}$
Operating Temp.	$-30-70{ }^{\circ} \mathrm{C}$
Storage Temp.	$-40-80^{\circ} \mathrm{C}$
Field of View Equivalent Circuit	
Equivalent Circuit	

[^0]In a typical application, we recommend using a two-stage operational amplifier and amplifying it by about 72.5 dB (about 4000 times).
If you are considering using only one in the camera like this time, you usually do not use such a circuit in terms of cost and work, so consider whether it is possible to simply measure a few millivolt fluctuations and use it. To do.
-Typical Application

4-6. Pyroelectric infrared sensor AKE-1 (RE-210)

《Reference URL》
https://akizukidenshi.com/download/ds/nicera/ake-1_re-210.pdf

Test Method

- Vout is used by pulling down to GND (connected with $47 \mathrm{~K} \Omega$)

4-7. Pyroelectric infrared sensor D205B

《Reference URL》
https://akizukidenshi.com/download/ds/senba/D205B.pdf https://micmodshop.ir/wp-content/uploads/2021/10/D205B-DataSheet.pdf

Amplifier 72.5 dB (about 4000 times)

Oscillograph

Recommended Model
Encapsulation Type IR Receiving Electrode Window Size Spectral Response Transmittance Output Signal[Vp-p] Sensitivity Detectivity (D*)
Noise[Vp-p] Output Balance Offset Voltage Supply Voltage Operating Temp Storage Temp

Field of View

D205B

 TO-5$0.7 \times 2.4 \mathrm{~mm}, 4$ elements
$4.9 \times 4.9 \mathrm{~mm}$
5- $14 \mu \mathrm{~m}$
$\geq 75 \%$
$\geq 5000 \mathrm{mV}$
$\geq 4300 \mathrm{~V} / \mathrm{W}$
$1.6 \times 10^{8} \mathrm{cmHz}^{1 / 2} / \mathrm{W}$
$<70 \mathrm{mV}$
$<10 \%$
$0.3 \sim 1.2 \mathrm{~V}$
$3-15 \mathrm{~V}$
$-30-70^{\circ} \mathrm{C}$
$-40-80^{\circ} \mathrm{C}$

Equivalent Circuit

```
- 3.3V power supply
- Vout is used by pulling down to GND (connected with \(47 \mathrm{~K} \Omega\) )
```


4－8．M5－Stack PIR AS312

Programing
pinMode（36，INPUT＿PULLUP）；

《Pin Setting》
《Status》
digitalRead（36）
pin

｜Product Features

－Detecting Range： 500 cm
－Delay time： $2 s$
－Induction Angle：＜ 100°
－IDDQ：＜60uA
－Op．T：$-20-80^{\circ} \mathrm{C}$

Schematic
$\mathrm{L}=12 \mathrm{M} / 3.3 \mathrm{~V}$

4－9．Summary of usage

＂Supply voltage＂and＂PullDown／PullUp setting of detection output terminal＂for each sensor are as follows．

NO	Model	イメージ	Vin（Spec）	Vin	Pull Up／Down	Jout（Spec	Distance	Angle	Delay time	Note
1	SB412A		3．5－12V	5 V	－	3V	$3 \sim 5 \mathrm{~m}$	~ 115	$\begin{gathered} 2.3 \mathrm{sec} \\ \sim 80 \mathrm{~min} \end{gathered}$	
2	EKMC1601112		$3 \sim 6 \mathrm{~V}$	3.3 V	Pulldown	Vin－0．5	$\sim 5 \mathrm{~m}$	82－94	－	
3	EKMC1603111		3～6V			Vin－0．5	$\sim 12 \mathrm{~m}$	92－102	－	
4	$\begin{aligned} & \text { Grove-PIR } \\ & 101020793 \end{aligned}$		3～5V		－	3.3 V	$\begin{gathered} 3.2 \mathrm{~m} \\ \sim 12 \mathrm{~m} \end{gathered}$	~ 120	$\sim 1 \mathrm{Sec}$	
5	D203B		3～15V		PullDown	$\begin{array}{\|c\|} \text { Vin- (0.3- } \\ 1.2) \end{array}$	$\sim 5 \mathrm{~m}$	120－144	－	
6	$\begin{gathered} \text { AKE-1 } \\ (\text { RE-210 }) \end{gathered}$	$-$	3～10V			$\begin{aligned} & 2.5 \mathrm{~V} \sim \\ & (4.0 \mathrm{~V}) \end{aligned}$	－	135－138	－	
7	D205B	$-$	3～15V			$\left\lvert\, \begin{gathered} \text { Vin- (0.3- } \\ 1.2) \end{gathered}\right.$	$\sim 5 \mathrm{~m}$	120－144	－	
8	$\begin{array}{\|c} \text { M5Stack-PIR } \\ \text { PIR_AS312 } \end{array}$		3.3 V		Pullup	－	$\sim 0.5 \mathrm{~m}$	~ 100	2 sec	pinMode（PIN＿IN，INPUT＿PULLUP）；

5-1. Simple usage survey of sensor only type (circuit)

Supply 3.3V to the sensor unit product [D203B/AKE-1/D205B] and install a PullDown resistor
to investigate whether simple measurement is possible

5-2. Simple usage survey of sensor only type (program)

For the sensor unit [D203B, AKE-1, D205B] products, the LED lights up when the voltage fluctuates from the average value of the past 10 times. (The following is designed to detect when it changes by 7 mV)

```
#define LED PIN
#define TEST_PIN
9 #define ARR_MAX
1 1
uint32_t pirArr [ARR MAX];
3 int arrCount = 0,
14
5 unsigned long loopCount = 0
7 void setup() {
    // Serial monitor
    Serial.begin(115200);
    Serial.println();
    // PIN Setting
    pinMode(LED_PIN, OUTPUT);
    //pinMode(TEST_PIN, INPUT)
    pinMode (TEST_PIN, ANALOG);
    //pinMode (M5STK_PIN, INPUT_PULLUP);
    // INIT ARREY
    for(int i=0;i<ARR_MAX;i++){
        pirArr[i]=0;
    }
    // Display Serial monitor
    Serial.println("Setup completed!");
32%
ESP32
terminal setting
```

```
34 void loop() {
35 // Sleep[1 sec]
    // Sleep[1 sec]
    delay (500);
    loopCount++;
    // checkStatus
    uint16_t analog1Adc = analogRead(TEST_PIN);
    uint32_t analog1Mv = analogReadMilliVolts(TEST_PIN);
    //Array average
    uint32_t total =
For (int i=0; i ARR_MAX; i+)! ! Calculation of the average of
    total = total + pirArr[i];
    total = total + pirArr[i];
uint32 t ave = total / ARR MAX;
    //Check Voltage
    //Check Voltage 
    int diff = analoglMv - ave; Determine if there is a 7mV change
    digitalWrite(LED_PIN, HIGH);
    Serial.printf("[%ld] Yes Detected ADC=%d, mV=%d[mV], ave=%d, diff=%d\n", loopCount, analoglAdc, analog1Mv, ave, diff);
} else
    digitalWrite(LED_PIN, LOW)
    Serial.printf("[%1d] No Detected ADC=%d, mV=%d[mV], ave=%d, diff=%d\n", loopCount, analog1Adc, analog1Mv, ave, diff);
}
//Update Array
pirArr[arrCount]=analog1Mv
pirArr[arrCo
arrCount++;
    arrCount = 0
}
62 }
```


5-3. Simple usage survey of sensor only type (Result)

For the products of the single sensor type [D203B, AKE-1, D205B], we determined whether the difference from the average of the past 10 times can be easily detected without an operational amplifier. Since several mV cannot be measured accurately and erroneous detection may occur, it seems that a simple method is not practical.

[450] No Detected ADC=759, mV=756[mV], ave=757, diff=-1 [451] No Detected ADC=759, mV=760[mV], ave=757, diff $=3$ [452] No Detected ADC=759, mV=761[mV], ave=757, diff $=4$ [453] No Detected ADC=763, $\mathrm{mV}=759[\mathrm{mV}]$, ave $=757$, diff=2 [454] No Detected ADC=758, mV=757[mV], ave=757, diff $=0$ [455] No Detected ADC=762, mV=757[mV], ave=757, diff=0 [456] No Detected ADC=763, mV=758[mV], ave=757, diff $=1$ [457] No Detected ADC=759, mV=757[mV], ave=757, diff $=0$ [458] No Detected $A D C=762, m V=757[m \mathrm{~V}]$, ave $=757$, diff $=0$ [459] No Detected ADC=765, mV=759[mV], ave=757, diff=2 [460] No Detected ADC=758, mV=763[mV], ave=758, diff=5 [461] No Detected $A D C=766, m V=757$ [mV], ave=758, diff=-1 [462] No Detected ADC=763, mV $=759[\mathrm{mV}]$, ave $=758$, diff $=1$ [463] No Detected ADC=761, mV=759[mV], ave=758, diff $=1$ [464] Yes Detected ADC=761, mV=765[mV], ave=758, diff=7 [465] No Detected ADC=757, mV=759[mV], ave=759, diff=0 [466] No Detected ADC=757, mV=757[mV], ave=759, diff=-2 [467] Yes Detected $A D C=745, m V=749[m V]$, ave $=759$, diff $=-10$ [468] Yes Detected ADC=745, mV=746[mV], ave=758, diff=-12 [469] Yes Detected ADC=742, mV=745[mV], ave=757, diff=-12 [470] Yes Detected $A D C=747, m V=748[m V]$, ave $=755$, diff $=-7$ [471] No Detected ADC=752, mV=752[mV], ave=754, diff=-2 [472] No Detected ADC=755, mV=756[mV], ave=753, diff $=3$ [473] Yes Detected ADC=766, mV=761[mV], ave=753, diff $=8$ [474] Yes Detected $A D C=768, m V=762[m V]$, ave $=753$, diff=9 [475] Yes Detected $A D C=765, m V=762[m V]$, ave $=753$, diff $=9$ [476] No Detected ADC=759, mV=758[mV], ave=753, diff=5 [477] No Detected ADC=761, mV=757[mV], ave=753, diff=4

Since a difference of 7 mV or more occurs when approaching, consider whether it can be distinguished at about 7mV

421] No Detected ADC=765, mV=760[mV], ave=761, diff=-1 [422] No Detected ADC=766, mV=761[mV], ave=761, diff=0 [423] No Detected $A D C=763, \mathrm{mV}=759[\mathrm{mV}]$, ave $=761$, diff $=-2$ [424] No Detected $\mathrm{ADC}=763, \mathrm{mV}=762[\mathrm{mV}]$, ave $=761$, diff $=1$ [425] No Detected ADC=762, mV=761[mV], ave=761, diff=0 [426] No Detected ADC=761, mV=760[mV], ave=761, diff=-1 [427] No Detected ADC=762, mV=762[mV], ave=761, diff $=1$ [428] No Detected ADC=763, mV=761[mV], ave=761, diff $=0$ [429] No Detected ADC=762, mV=759[mV], ave=761, diff=-2 [430] No Detected ADC=759, mV=757[mV], ave=760, diff=-3 431] Yes Detected $\mathrm{ADC}=764, \mathrm{mV}=750[\mathrm{mV}$], ave=760, diff=-1 [432] No Detected ADC=763, mV=759[mV], ave=759, diff $=0$ [433] No Detected ADC=764, mV=757[mV], ave=759, diff=-2 [434] No Detected ADC=764, mV=760[mV], ave=758, diff=2 [435] No Detected ADC=761, mV=757[mV], ave=758, diff=-1 [436] No Detected ADC=759, mV=757[mV], ave=758, diff=-1 [437] No Detected ADC=759, mV=756[mV], ave=757, diff=-1 [438] No Detected ADC=762, mV=761[mV], ave=757, diff=4 [439] No Detected ADC=761, mV=757[mV], ave=757, diff=0 [440] No Detected ADC=759, mV=757[mV], ave=757, diff=0 [441] No Detected $A D C=759, m V=757[m V]$, ave $=757$, diff $=0$ [442] No Detected ADC=759, mV=757[mV], ave=757, diff=0 [443] No Detected ADC=759, mV=759[mV], ave=757, diff=2 [444] No Detected ADC=759, mV=759[mV], ave=757, diff=2 [445] No Detected ADC=759, mV=757[mV], ave=757, diff $=0$ [446] No Detected $A D C=758, m V=756[m \mathrm{~V}]$, ave $=757$, diff $=-1$ [447] No Detected ADC=758, mV=754[mV], ave=757, diff=-3 [448] No Detected ADC=760, mV=757[mV], ave=757, diff=0

Even if left unattended, $\mathbf{7 m V}$ or more often occurs, resulting in false detection.

Judgment is made with a difference of 7 mV , but if it is larger than that, the normal sensing reaction will deteriorate.
Smaller values result in more false positives.

Originally, it is assumed that it is necessary to accurately judge a difference of several mV that is smaller than 7 mV .

5－4．Simple usage survey of sensor only type（Conclusion）

Since it is difficult to use the single sensor［D203B，AKE－1，D205B］with a simple method， the remaining 5 sensors are measured．

NO	Model	イメージ	Vin（Spec）	Vin	Pull Up／Down	Vout（Spec	Distance	Angle	Delay time	Note
1	SB412A		$3.5-12 \mathrm{~V}$	5 V	－	3 V	$3 \sim 5 \mathrm{~m}$	~ 115	$\left\|\begin{array}{c} 2.3 \mathrm{sec} \\ \sim 80 \mathrm{~min} \end{array}\right\|$	
2	EKMC1601112		$3 \sim 6 \mathrm{~V}$		Pulldown	Vin－0．5	$\sim 5 \mathrm{~m}$	82－94	－	
3	EKMC1603111		3～6V			Vin－0．5	$\sim 12 \mathrm{~m}$	92－102	－	
4	$\begin{aligned} & \text { Grove-PIR } \\ & 101020793 \end{aligned}$		3～5V		－	3.3 V	$\begin{gathered} 3.2 \mathrm{~m} \\ \sim 12 \mathrm{~m} \end{gathered}$	～120	$\sim 1 \mathrm{Sec}$	
5	D203B		3～15V	3.3 V		Vin－（0．3－ $1.2)$	$\sim 5 \mathrm{~m}$	120－144	－	
6	AKE－1 （RE－210）		3～10V usin	fic ，a	use wit PullDown lar oper	$\begin{aligned} & \text { simpl } \\ & \text { nápvar } \end{aligned}$	e me nplifi	hod 135－138 is r	equir	ed.)
7	D205B		3～15V			$\begin{gathered} \text { Vin- }(0.3- \\ 1.2) \end{gathered}$	$\sim 5 \mathrm{~m}$	120－144	－	
8	$\begin{array}{\|c} \text { M5Stack-PIR } \\ \text { PIR_AS312 } \end{array}$		3.3 V		PullUp	－	$\sim 0.5 \mathrm{~m}$	~ 100	2 sec	pinMode（PIN＿IN，INPUT＿PULLUP）；

6-1. Circuit 1

Connect two motion sensors to ESP32 and make a circuit so that the status can be checked with LEDs when sensing.

6-2. Circuit 2

Connect 3 human sensors to ESP32 and make a circuit so that you can check the status with LEDs when sensing

7. Program

When a high signal is detected at the Vout pin, the LED lights up.

```
7 #define LEDI_PIN 32
8 #define LED2_PIN 14
9 #define GROVE_PIN 2
9 #define GROVE_PIN 2
2 unsigned long loopCount = 0;
1 3
4 void setup() {
5 // Serial monitor
16 Serial.begin(115200);
Serial.println();
// PIN Setting
9 pinMode(LEDI_PIN, OUTPUT);
pinMode (LED2_PIN, OUTPUT);
    pinMode (GROVE_PIN, INPUI);
\mathrm{ pinMode(GROVE_PIN, INPUT); }
    // Display Serial monitor
// Display Serial monitor 
25 }
void loop() (
    // Sleep[1 sec]
    delay(1000);
    delay (1000);
    // checkStatus
1 // checkStatus ( int checkStatus = digitalRead(GROVE_PIN)
if(checkStatus ) ) 
if(checkStatus )f
    Serial.printf("[%ld]GROVE Yes Detected checkStatus=%d\n", loopCount, checkStatus);
    } else f
    digitalWrite(LEDI_PIN, LOW)
    Serial.printf("[%1d]GROVE No Detected checkStatus=%d\n", loopCount, checkStatus);
}
checkStatus = digitalRead(MSSTK_PIN);
    if(checkStatus )l
        digitalWrite(LED2_PIN, HIGH); 
    } else { , % , lopCoun, checkStatus)
    } else {
Serial.printf("[%%1d]MSSTK No Detected checkStatus=%d\n", loopCount, checkStatus);
    46 { Se
        ESP32 terminal setting
        processed every second
Serial.println()
```



```
if(checkStatus )1f
Get GROVE sensor detection information
```

LED control and serial information display according to sensing results
Get M5Stack sensor detection information
LED control and serial information display according to sensing results

8-1. Measurement result 1 (cold object)

Investigate whether cold objects can also be detected. Can be detected without problems with all sensors.

8-2. Measurement result 2 (small object)

Measure whether even small moving objects can be detected.
 Toy drones can be detected at about 50 cm or less in front

8-3. Measurement result 3 (outdoor: park)

EKMC1601112/EKMC1603111 are available.
Other sensors are falsely detected within 1 minute and cannot be measured.

8-3. Measurement result 3 (outdoor: park)

EKMC1601112/EKMC1603111 can be detected almost as specified

Measurement method:

Move one step (about 50 cm) and check if it can be detected.
(However, the accuracy of the horizontal and vertical installation
standards is low due to visual measurements.)

EKMC1601112

	Horizontal direction (left half)					Unit: m
		1	2	3	4	5
	1					
	2					
	3					
	4					
	5					

	Horizontal direction (left half)					Unit: m
		1	2	3	4	5
	1					
$\stackrel{\square}{7}$	2					
$\stackrel{+}{2}$	3					
$\stackrel{\bar{D}}{ }$	4					
\% -	5					

$8-4$. Measurement result 4 (outdoor: under the roof)

I installed the sensor in the shadow under the roof and measured it, but the result was the same as when I was in the park.

$8-5$. Measurement result 5 (indoor)

As a result of indoor measurement, all sensors can detect up to $2 m$ without any problem.
At 3 m , the sensor confirmed the difference in sensitivity.

$8-6$. Summary of measurement results

According to the measurement results, the first place was "EKMC1603111" and the second place was "EKMC1601112".

Type	Product	Cold Objects	Small Objects	Outdoors	Indoor	Note
Modularization	SB412A - ${ }^{\text {bibeng }}$	detect without problems	Detected at about 50 cm or less	Not measurable	OK up to 2 m (3 m is about 50\%)	
	Grove-PIR					
	M5Stack-PIR				OK up to 2 m (3 m is almost impossible)	
Integrated lens	EKMC1601112			According to specifications (About 12m long)	3m OK	
	EKMC1603111			According to specifications (About 15m long)	over 4m)	Accurate detection even at short distances

[^0]: - 3.3V power supply
 - Vout is used by pulling down to GND (connected with 47K

