Pachinko Simple Simulation [What is the hit distribution graph after spinning 10 million times?]

number of rounds

number of hits

-Is there a lucky machine? Is there a lucky rounds?

A pachinko machine is designed to draw a winning lottery with a probability of about 1/319 each time a ball enters the Prize-winning entrance.

Simple simulation only for the first hit.
(The hit during the probability change is not considered.)

Let's consider the case of making a graph of how many times the number of hits is high when it is rotated 10 million times.

Prize-winning

entrance
First hit probability: 1/319.6

Which one do you bet?

1500 rounds No hit

Which one would you bet on heads or tails?

A game where you toss a coin and guess whether it will come up heads or tails (Which comes out is 50% heads or tails)

Bet on what will come out next if the last 7 are all "heads"

Will the back come out soon?
The probability of 8 times in a row is $1 / 256$

Is there a higher probability that the tails will come out next time?

Simulation of spinning pachinko 10 million times

extraction with restoration

Extract from a bag containing 1 per 319

Extract from a bag containing 1 per 319 pieces. conditions each time

Count the number of times until you hit. If you get a hit, the number of times will return to $\mathbf{0}$. Make a distribution graph that repeats $10,000,000$ times to see how many times the hit comes out.

If $1 / 319$ is repeated 10 million times, what kind of graph do you think will be the relationship between the number of hits and the number of rounds?

Hit per round distribution graph

Specific round is peak

number of rounds
The hit gradually decreases with each round.

number of rounds
The hit decreases linearly with each round.

Python program

Published on Hobby-IT site
 https://hobby-it.com/

2 from google.colab import files
3
4 maxNum $=1000000000$
5 maxBet $=500$
6 checkCount $=200$
dayCount $=2000$
8
9 checkCountDiv = maxBet//checkCount
10 dayCountDiv $=$ maxNum//dayCount
11
12 hitCount $=[0] *($ maxBet +1$)$
13 hitCheck $=[0] *$ (checkCountDiv)
14 betcount $=[0] *$ (checkCountDiv) 15 dayCheck $=[0] *$ (dayCountDiv)
16 hit $=e$
17
18 for num in range(1, maxNum):
hit $+=1$
betCount[((hit-1)//checkCount)] += 1
count $=$ random.randint $(1,319)$
if count $==319$ or hit $==$ maxBet: if hit == maxBet:
print('hit Over maxBet')
hitCount[hit] += 1 \# How many Hit per Bet Count hitcheck[((hit-1)//checkCount)] += 1 \# How many Hit per Check Count dayCheck[((num-1)//dayCount)] $+=1$ \# How many Hit per Day hit $=0$

30 \# Output
31 with open('result1.txt', 'w') as f :
for num in range (1, (maxBet+1)):
f.write(str(num) $+{ }^{\prime \prime}, "+\operatorname{str}($ hitCount [num] $\left.)+' \backslash n '\right)$
files.download('result1.txt')
with open('result2.txt', 'w') as f :
for num in range(0 , checkCountDiv):
f.write(str(num) + "," + str(hitCheck[num]) + "," + str(betCount[num]) + '\n')

39 files.download('result2.txt')
40
41 dayHit $=[0]$ * 30
42 for dNum in range(0,30):
for num in range(0 , dayCountDiv)
if dayCheck[num] $==$ dNum:
dayHit[dNum] +=
45 dayHit[dNum] 46 with open('result3.txt', 'w') as f:
46 with open('result3.txt', w '
48

Random number

generation (1 to 319)
\qquad
repeat 10 million trials
Maximum number of revolutions to hit (5000)
To grasp the number of hits per 200 rotations
To know how many hits per day

Due to the array declaration, 25200 rotations are required up to 5000 rotations Due to the array declaration, 2000 rotations are required up to 10 million rotations (how many days are required)

Tried 10 million revolutions

Random numbers from 1 to 319 are taken out, and the time when 319 comes out is a hit. (If it is turned up to $\mathbf{5 0 0 0} \mathbf{~ r p m}$, it is a hit, but it has never turned so far.)

File1

Output the number of hits for each rotation to a file

File2

Output the number of hits per 200 rotations to a file

File3

Count the number of hits per day (2000 rotations) and output to a file

Simulation result 1

Hit per round distribution graph

Simulation result 2

Simulation result 3

回転数	当たり回数	全Bet回数	割合	1 Bet確率
200	1461207	466321685	46.6	0.313347
400	780414	248856794	24.9	0.3136
600	415737	132977917	13.3	0.0
800	222597	70942543	7.1	0.313
1000	119213	37811560	3.8	0.315282
1200	63075	20156485	2.0	0.312927
1400	33946	10744644	1.1	0.315934
1600	17947	5707458	0.6	0.314448
1800	9647	3029760	0.3	0.318408
2000	5014	1602734	0.2	0.31284
2200	2714	860844	0.1	0.315272
2400	1423	458067	0.0	0.310653
2600	748	247573	0.0	0.302133
2800	422	135156	0.0	0.312232
3000	213	73258	0.0	0.290753
3200	144	37739	0.0	0.381568
3400	60	16923	0.0	0.354547
3600	29	8863	0.0	0.327203
3800	15	4628	0.0	0.324114
4000	8	2519	0.0	0.317586
4200	3	1480	0.0	0.202703
4400	4	659	0.0	0.60698
4600	0	400	0.0	
4800	1	292	0.0	0.342466
5000	1	18	0.0	5.555556

The hit rate is high，but the number of bets is also large，so the probability is the same for all rotations
The probability of hitting once is $1 / 319$（about 0.31347% ）

The ratio of hits at 201 to 400 rpm is＂24．9\％＂
Since this is a percentage from the whole，the percentage from the rest after subtracting the hit up to 200 is＂about 46．6\％＂

The probability of winning when spinning 200 times
is "about 46.6\%"

Also，（probability）calculate whether it matches the theoretical value
If the probability of winning is $1 / 319$ and there are 200 chances，can you calculate by multiplying by 200？？？

$$
\begin{aligned}
(1 / 319) \times 200 & =0.626959 \cdot \cdot \cdot \\
& =62.69 \%
\end{aligned}
$$

Simulation result 4

I'm not sure, so I asked ChatGPT.

There is 1 hit out of 319 . What is the probability of winning within 200 times if this lottery is re-extracted?
Please answer in English.

(93) This problem can be solved using the binomial distribution.

First, the probability of winning in one trial is $1 / 319$. Assuming that 200 trials are conducted independently, the number of times X the hit is drawn follows a binomial distribution $B(200$, $1 / 319)$. Here, $B(n, p)$ represents the binomial distribution with n trials and a success probability of p.

Note that since re-sampling is being performed, even if a hit is drawn once in one trial, there is a possibility of drawing a hit again in the next trial.

Based on this information, the probability of winning within 200 trials can be calculated as follows:

Therefore, the probability of winning within 200 trials is approximately 0.5221 , or about 52.21\%.

The probability of never hitting is 1 minus
1/319(same for 318/319)
$=0.466312 . \cdots$
Э 46.6\%
The theoretical calculation values matched, so the simulation was correct!

Simulation result 5

number of times
90000
[Aggregation of 10 million rotations (5000 days)]
Distribution graph of the number of first hits per day (2000 rotations)

Discussion and Summary

- Is there a rotation speed that hits the most?

Not exist. The lower the number of rotations, the greater the distribution of the number of hits, but the probability is not high.From 1 to 200, about half (46.6%) of the total hits.

- Is it worth aiming for the addictive table or the hitting table?

Theoretically, the odds are the same, as the lottery will be held at $1 / 319$ each time regardless of past conditions. All the machines have the same probability, so no matter which one you hit, it all depends on your luck.

- Which is better, moving the table or sticking to it?

Theoretically, the probabilities are the same, so it's hard to say which one is better.
-How addictive is it?
There were more than 4,000 (nearly 5,000) hits, so it's possible that there were no hits for two days. However, 99.9% hits up to 2200 rpm

- Is the rotating table really good?
"It's definitely good." The probability increases with the number of turns. The lower the cost per time, the better.

If you have any requests for simulations, please let me know!

We look forward to hearing from you in the comments section or on our website.
(Anything related to IT, including electronic work, is OK.)

