Illuminance sensor investigation (electronic work) [Which one should I use?]

 Understand the basic specifications and programming of the illuminance sensor
 Practical data when used with ESP32

Use of sensors posted on this channel

No	Sensor	Post name	URL
1	LED (Resistance value calculation)	If you want to start electronic work, start with this "L blinking"	https://hobby-it.com/smartremo2/
2	Infrared receiving sensor	Smart remote controller Electronic work (Infrared receiving sensor edition)	https://hobby-it.com/smartremo3/
3	Ir transmission LED (transistor)	Smart remote controller Electronic work (Ir transmission LED)	https://hobby-it.com/smartremo4/
4	Temperature sensor	Temperature sensor survey (electronic work) [1st place?]	https://hobby-it.com/temp-survey
5	Humidity sensor	Humidity sensor survey (electronic work) [1st place?]	https://hobby-it.com/humi-survey
6	Motion sensor	Motion sensor survey (electronic work) [1st place?]	https://hobby-it.com/motion-survey
7	Light sensor	Illuminance sensor investigation (electronic work) [Which one should I use?]	<u>https://hobby-it.com/illum-survey</u>
8	Camera [ESP32 & OV2640]	Save image to GoogleDrive[API]	https://hobby-it.com/save-jpeg-image-with- gdriveapi-1/
9		Save image to GoogleDrive[GAS]	https://hobby-it.com/save-jpeg-image- gdrivegas-1/
10	Camera [M5Stack TimerCamera]	Watch videos on your smartphone	https://hobby-it.com/m5timer_webcam
11		Post image to LINE with ESP32	<u>https://hobby-it.com/m5timer_line</u>
12		Saves images to Google Drive at regular and scheduled time	<u>https://hobby-it.com/m5timer_gdrive</u>
13		Add Camera to Refrigerator (Saved on GoogleDrive)	https://hobby-it.com/m5timer_refrigerator

table of contents

1. Mechanism of illuminance sensor

2. List of surveyed illuminance sensors 8. Measurement result

3. ESP32 port specifications

4. Specifications of each sensor

5. Circuit

9. Review circuits, etc.

7. Measuring instrument

10. Measurement result

11. Summary

6. Program

1-1. Photodiode

Photodiode mechanism

《Reference URL》

E_g:bandgap energy hv:light energy

https://optipedia.info/laser/fiberlaser/photodiod/

Basic structure of a photodiode

https://www.analog.com/jp/analog-dialogue/rags/rag-issue-108.html

By interacting with light, matter can absorb light energy (photons) and release it as electrical energy (electrons). This is called the photoelectric effect.

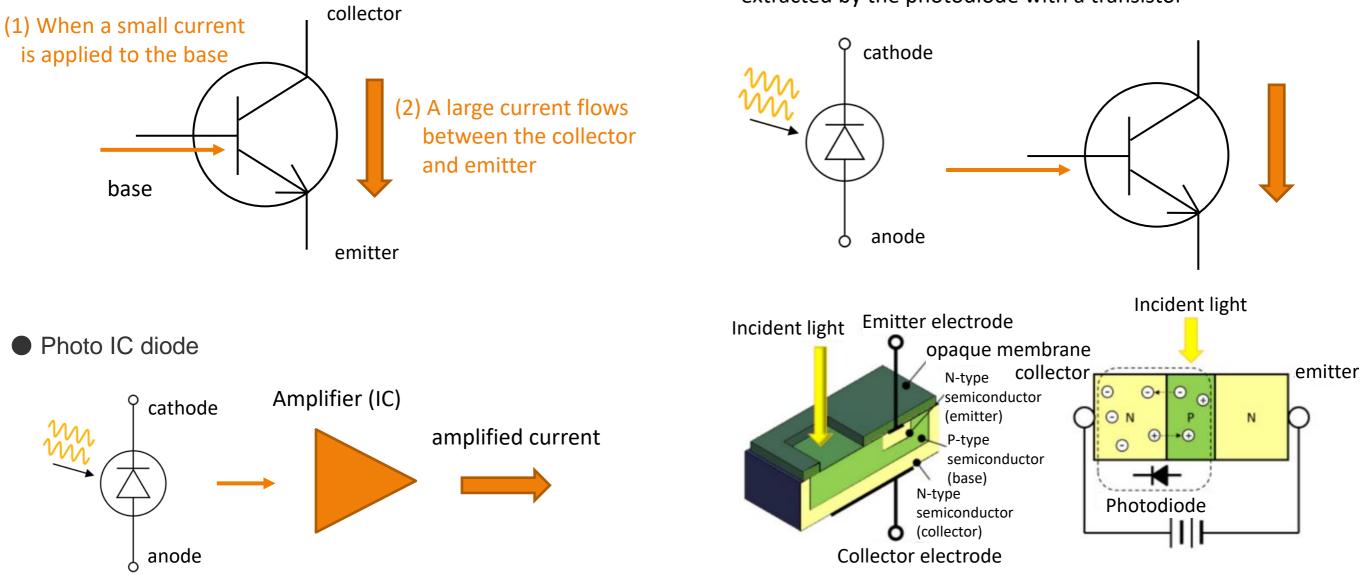
When the photoelectric effect occurs in a semiconductor, a phenomenon called the photovoltaic effect occurs, in which a potential difference occurs at the junction. Photodiodes use these effects to detect light.

LED can also generate power

LEDs have the same principle as photodiodes, and current flows when exposed to light.

Electricity can also be converted to light with a reverse bias, so it is normally used to emit light.

When the energy of the incident light is greater than the bandgap energy of the semiconductor, electrons in the semiconductor crystal are excited and pulled up from the valence band to the conduction band.


At this time, a positive charge (hole) is generated at the original position of the electron. These electrons and holes move to the N layer and P layer, respectively, due to the potential difference between the two layers.

As a result, a current is generated, which can be extracted as a current signal by connecting an external circuit such as an amplifier to the photodiode, enabling light detection.

Since the materials used for photodiodes have wavelength-dependent quantum efficiency, it is necessary to select materials for each wavelength. Indium-gallium-arsenide (InGaAs) is suitable for the near-infrared region.

1-2. Phototransistor/Photo IC Diode

Operation of the transistor

《Reference URL》 https://metoree.com/categories/phototransistor/ https://www.hamamatsu.com/content/dam/hamamatsu-photonics/ sites/documents/99_SALES_LIBRARY/ssd/photo_ic_diode_kpic9007j.pdf

Phototransistor

"Photodiode" + "transistor" structure, amplifying the current extracted by the photodiode with a transistor

1-3. Approximate illuminance and brightness

《Reference URL》

https://www.engineeringtoolbox.com/light-level-rooms-d_708.html

Outdoor Light Levels

Condition	Illumination			
Condition	(ftcd)	(lux)		
Sunlight	10000	107527		
Full Daylight	1000	10752		
Overcast Day	100	1075		
Very Dark Day	10	107		
Twilight	1	10.8		
Deep Twilight	0.1	1.08		
Full Moon	0.01	0.108		
Quarter Moon	0.001	0.0108		
Starlight	0.0001	0.0011		
Overcast Night	0.00001	0.0001		

Indoor Light Levels

Activity	Illuminance (Ix, Iumen/m ²)
Public areas with dark surroundings	20 - 50
Simple orientation for short visits	50 - 100
Areas with traffic and corridors - stairways, escalators and travelators - lifts - storage spaces	100
Working areas where visual tasks are only occasionally performed	100 - 150
Warehouses, homes, theaters, archives, loading bays	150
Coffee break room, technical facilities, ball-mill areas, pulp plants, waiting rooms,	200
Easy office work	250
Class rooms	300
Normal office work, PC work, study library, groceries, show rooms, laboratories, check-out areas, kitchens, auditoriums	500
Supermarkets, mechanical workshops, office landscapes	750
Normal drawing work, detailed mechanical workshops, operation theaters	1000
Detailed drawing work, very detailed mechanical works, electronic workshops, testing and adjustments	1500 - 2000
Performance of visual tasks of low contrast and very small size for prolonged periods of time	2000 - 5000
Performance of very prolonged and exacting visual tasks	5000 - 10000
Performance of very special visual tasks of extremely low contrast and small size	10000 - 20000

Brightness around 100 lux in indoor environment

2-1. Ambient light sensor to investigate

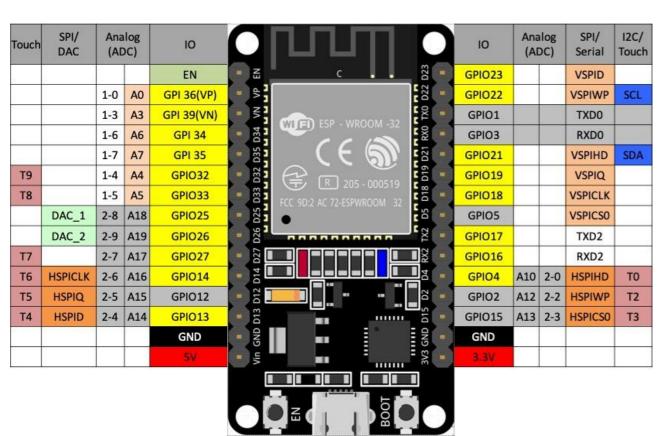
Selection criteria (IT Taro survey) • 3.3V/5V compatible

• In order from the same type of cheap item

(Do not select if the price of the next item is more than double)

NO	項目	manufacturer	model number	Image	URL	Price	Ope Vol	peak waveler	Note
1	llluminance sensor (phototransistor) NJL7302L-F3	Nisshinbo Micro Device	NJL7302L-F3		<u>https://akizukidenshi.com/catalo</u> <u>g/g/gl-08910/</u>	45	~15V	550 nm	
2	llluminance sensor (phototransistor) NJL7302L-F5	Nisshinbo Micro Device	NJL7302L-F5		<u>https://akizukidenshi.com/catalo</u> g/g/gl-08700/	50	~15V	550 nm	
3	llluminance sensor (phototransistor) NJL7502L (2 pieces)	Nisshinbo Micro Device	NJL7502L	e ;	<u>https://akizukidenshi.com/catalo</u> g/g/gl-02325/	50	~70V	560 nm	Must be purchased as a pack of 2 for 100 yen
4	Photo IC diode S13948-01SB	Hamamatsu Photonics	S13948-01SB		<u>https://akizukidenshi.com/catalo</u> <u>g/g/gl-13874/</u>	100	~12V	560 nm	
5	Grove-Light Sensor v1.2	Seeed Studio	101020132		https://jp.seeedstudio.com/Grov e-Light-Sensor-v1-2-LS06-S- phototransistor.html	269	3-5 V	540 nm	Buy at a nearby store, not online
	Total					514			

Cadmium sulfide (CdS) cells are cheap and easy to use (light can be treated as resistance). However, cadmium seems to be a regulated element under the RoHS Directive (Rose Directive: European Union (EU) Directive on Restrictions on the Use of Certain Hazardous Substances in Electronic and Electrical Equipment). It seems that the environmental load is large, so it was excluded from the selection.

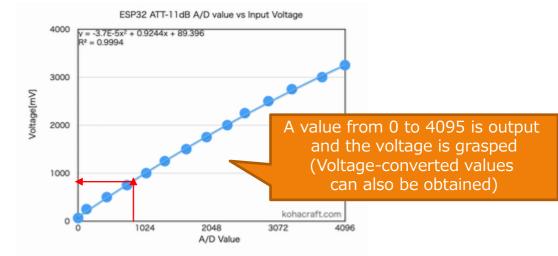

2-2. Illuminance sensor to be investigated (specified)

The product types can be classified into the following three types: "photodiodes", "photo IC diodes", and "modularization".

Туре	Content	Price Range	How to Use	Note
Phototransistor [NJL7302L-F3/F5, NJL7502L]	A product that integrates a photodiode and a transistor	inexpensive	Since the current changes when exposed to light, the change is measured	
Photo IC diode [S13948]	A product that integrates a photodiode and a current amplifier	somewhat inexpensive	(The change in current is measured by measuring the voltage across the resistor)	
Modularization [Grove-Light Sensor]	Products in which elements required for substrates are integrated	expensive	Measures illuminance from changes in output voltage	

3-1. ESP32 port

• ESP32 port configuration



• ADC terminal

- Two ADC circuits are installed.
- Attenuation of 11dB is set as standard, so measurement from 0 to 3.3V is possible.
- The resolution is 9 to 12 bits. Since it is 12bit by default, it is output in 0 to 4095.

(It is also possible to output the voltage-converted value. This time, we will use this function.)

• Wi-Fi is not available when using ADC2

https://kohacraft.com/archives/202202091047.html

3-2. ESP32 input terminal

IO-Pin

5. Electrical Characteristics

5.3 DC Characteristics (3.3 V, 25 °C)

Maximum input voltage

5.1 Absolute Maximum Ratings

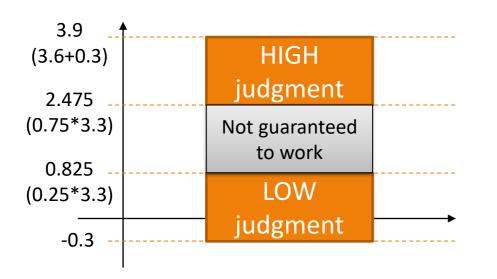

Stresses beyond the absolute maximum ratings listed in the table below may cause permanent damage to the device. These are stress ratings only, and do not refer to the functional operation of the device that should follow the recommended operating conditions.

Table 11: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDDA, VDD3P3, VDD3P3_RTC,	/DD3P3_RTC, Voltage applied to power supply pins per		3.6	V
VDD3P3_CPU, VDD_SDIO	power domain	-0.3	3.0	v
l _{output} *	Cumulative IO output current	-	1,200	mA
T _{store}	Storage temperature	-40	150	°C

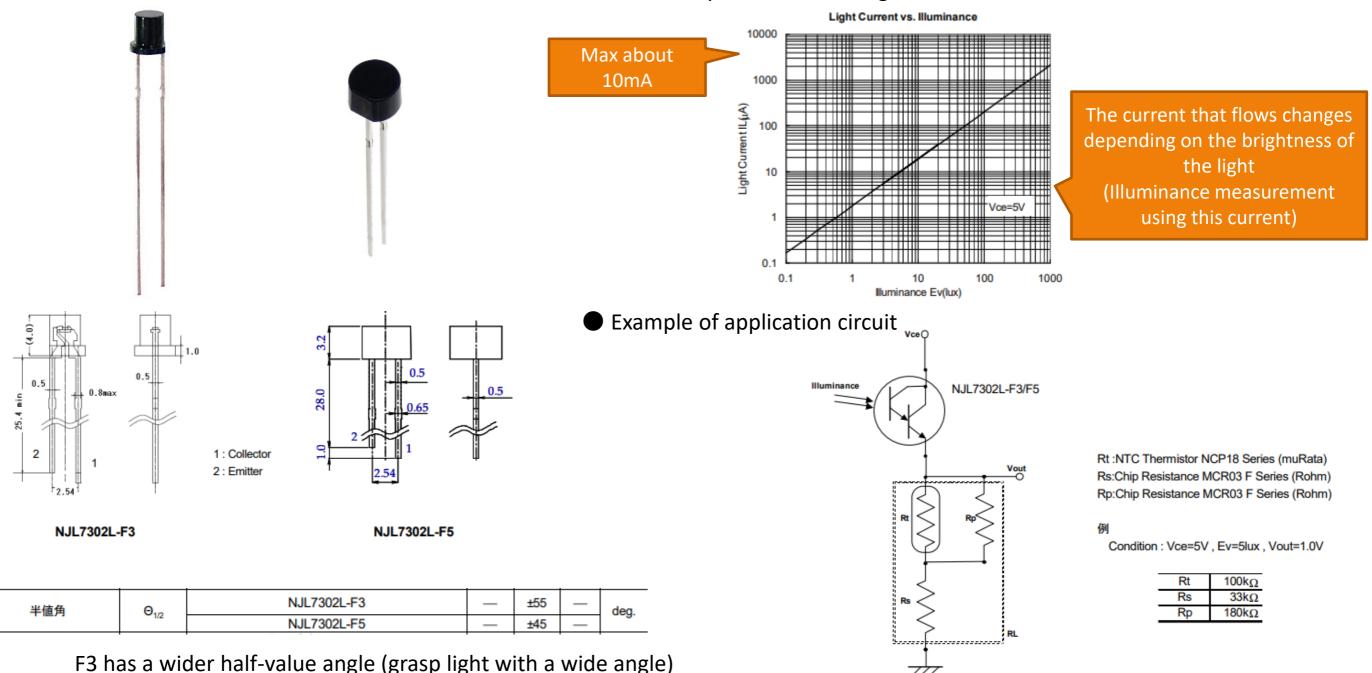
* The chip worked properly after a 24-hour test in ambient temperature at 25 °C, and the IOs in three domains (VDD3P3_RTC, VDD3P3_CPU, VDD_SDIO) output high logic level to ground.

Input HIGH/LOW judgment of ESP32

Table 13: DC Characteristics (3.3 V, 25 °C)							3.9(3.6+0.3)	
Symbol	Par	Min	Тур	Max	Unit	5.5 (5.6 (0.5)		
C _{IN}	Pin capacitance		-	2	-	pF		
V_{IH}	High-level input voltage		0.75×VDD1	-	VDD1+0.3	V ·		
V_{IL}	Low-level input voltage		-0.3	-	0.25×VDD1	V		
$ _{IH}$	High-level input current		-	-	50	nA		
IIL	Low-level input current		-	-	50	nA		
V _{OH}	High-level output voltage		0.8×VDD1	-	-	V	1	
V_{OL}	Low-level output voltage		-	-	0.1×VDD1	V	l IO-Pin	
	High-level source current	VDD3P3_CPU power domain 1, 2	-	40	-	mA		
$ _{OH}$	(VDD ¹ = 3.3 V, V _{OH} >= 2.64 V,	VDD3P3_RTC power domain ^{1, 2}	-	40 •		mA	Output Current	
	output drive strength set to the maximum)	VDD_SDIO power domain ^{1, 3}	-	20	-	mA	40mA	
	Low-level sink current (VDD ¹ = 3.3 V, V_{OL} = 0.495 V,							
I_{OL}			-	28	28 -	mA		
	output drive strength set to the maximum)							
R_{PU}	Pull-up resistor		-	45	-	kΩ]	
R _{PD}	Pull-down resistor		-	45	-	kΩ	1	
V_{IL_nRST}	Low-level input voltage of CHIP	P_PU to power off the chip	-	-	0.6	V	1	

Notes:

- 1. Please see Table IO_MUX for IO's power domain. VDD is the I/O voltage for a particular power domain of pins.
- For VDD3P3_CPU and VDD3P3_RTC power domain, per-pin current sourced in the same domain is gradually reduced from around 40 mA to around 29 mA, V_{OH}>=2.64 V, as the number of current-source pins increases.
- For VDD_SDIO power domain, per-pin current sourced in the same domain is gradually reduced from around 30 mA to around 10 mA, V_{OH}>=2.64 V, as the number of current-source pins increases.

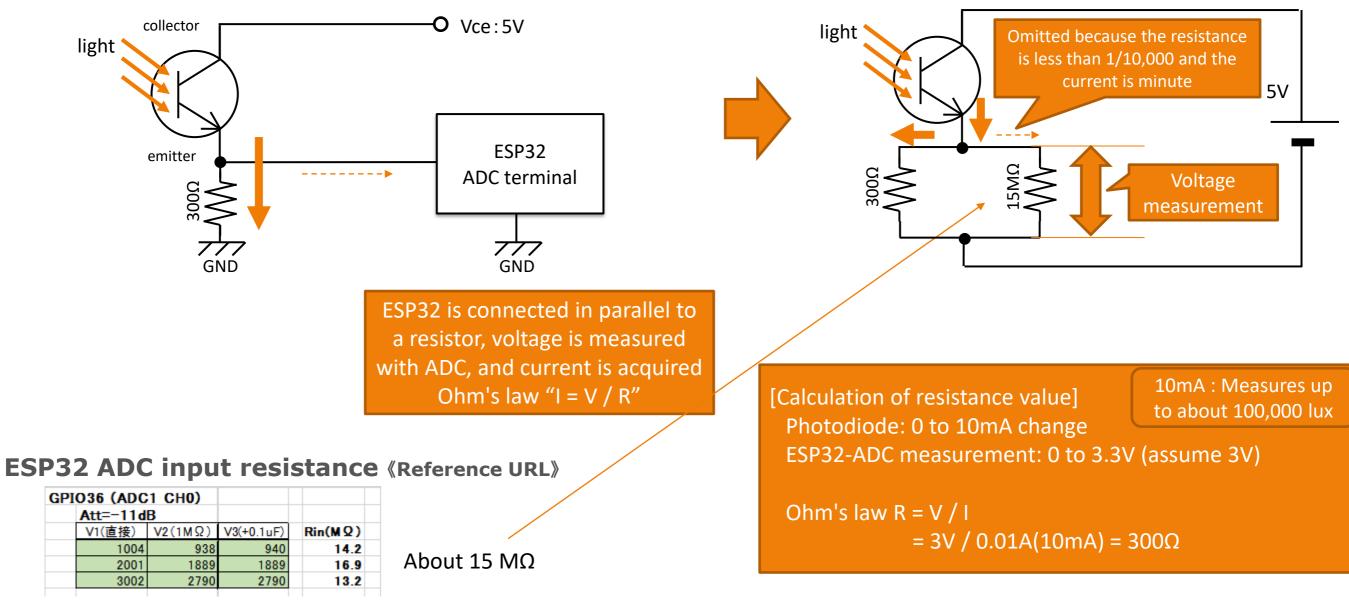

Since the input is up to MAX3.9V, it is impossible to input a 5V signal.

4-1.NJL7302L-F3/F5

《Reference URL》 https://www.nisshinbo-microdevices.co.jp/ja/pdf/datasheet/NJL7302L-F3_NJL7302L-F5_J.pdf

777

Relationship between flowing current and illuminance


4-1.NJL7302L-F3/F5

《Reference URL》

https://www.nisshinbo-microdevices.co.jp/ja/pdf/datasheet/NJL7302L-F3_NJL7302L-F5_J.pdf http://radiopench.blog96.fc2.com/blog-entry-1035.html

Measurement circuit

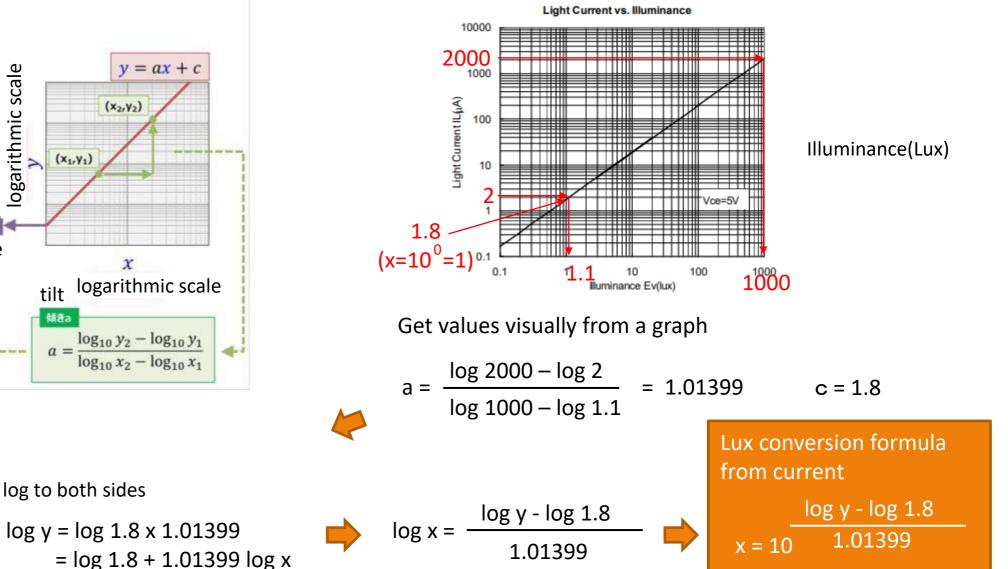
Measurement circuit (equivalent and easy to understand?)

http://radiopench.blog96.fc2.com/blog-entry-1035.html

4-1.NJL7302L-F3/F5

Relational expression of log-log graph

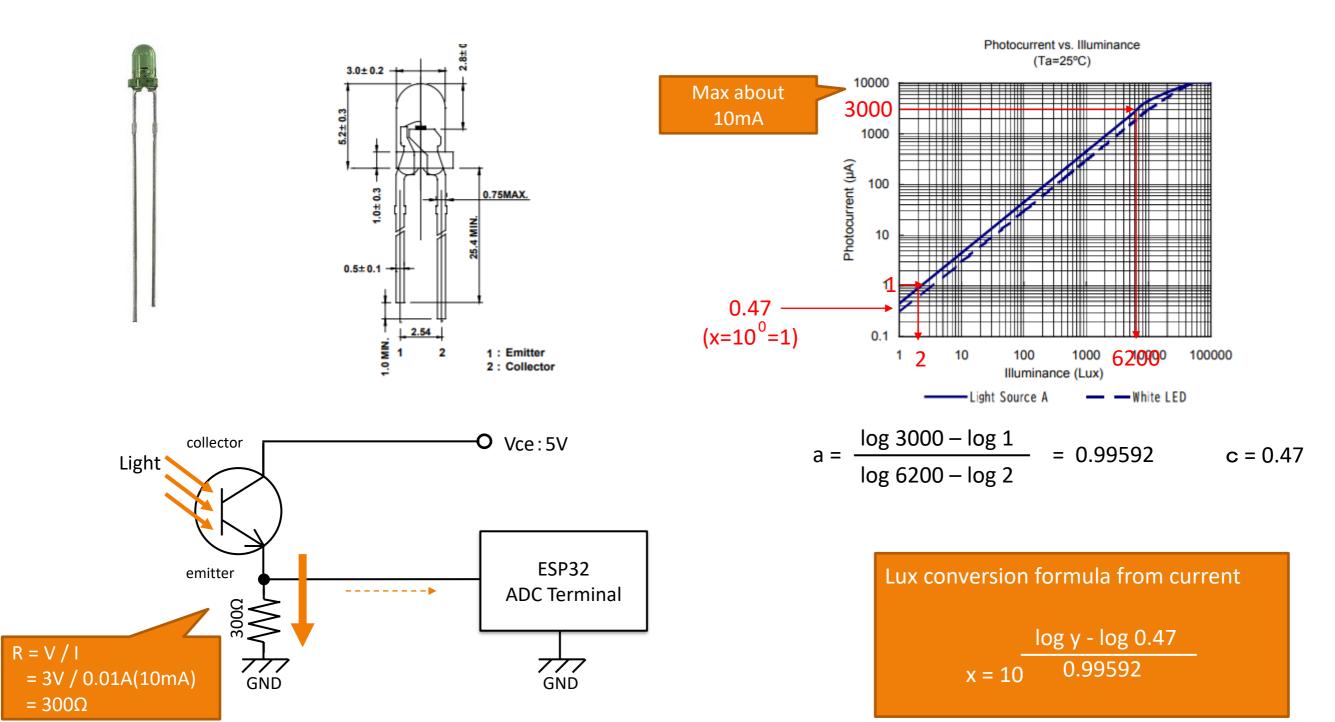
https://detail-infomation.com/semi-log-plot-and-log-log-plot/


 $\nu =$ cx y = ax + clogarithmic scale (x2,y2) normal scale (x1,y1) 2 切片c slice x x normal scale logarithmic scale tilt $\log_{10} y_2 - \log_{10} y_1$ a = $\log_{10} x_2 - \log_{10} x_1$

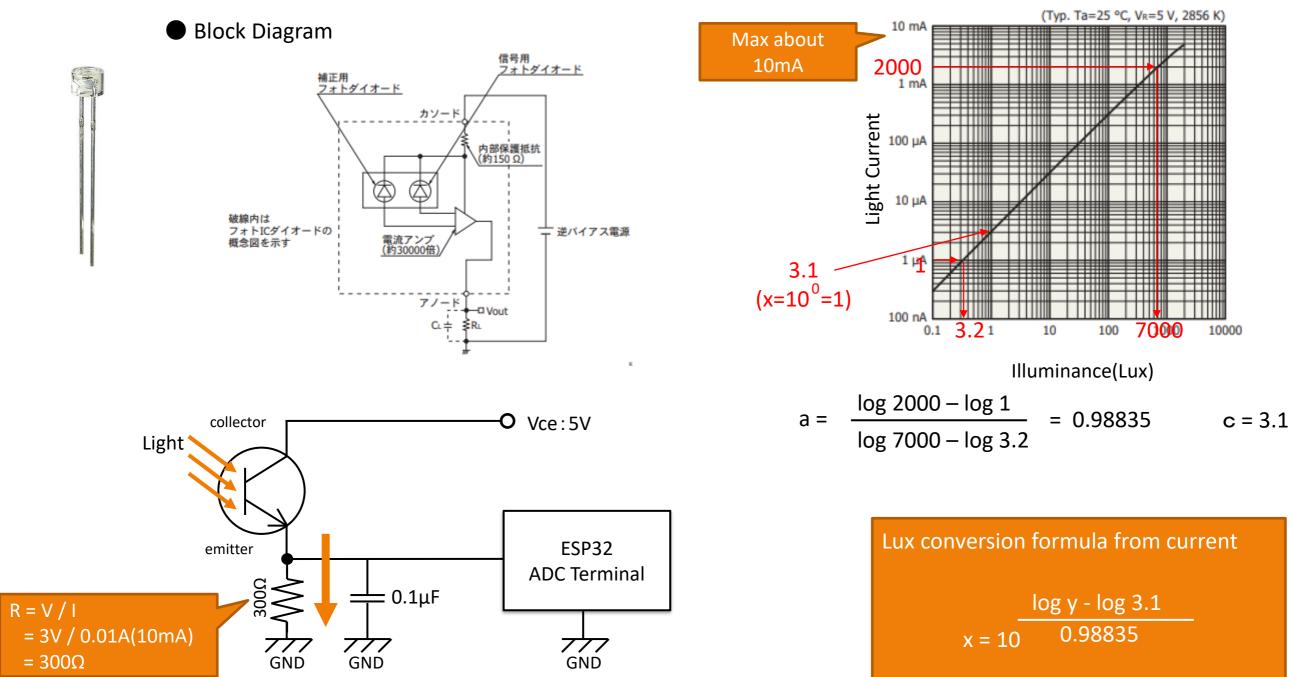
apply log to both sides

《Reference URL》 https://www.nisshinbo-microdevices.co.jp/ja/pdf/datasheet/NJL7302L-F3_NJL7302L-F5_J.pdf

https://detail-infomation.com/semi-log-plot-and-log-log-plot/ https://mathlandscape.com/log-log-graph/


Relational expression between current and lux

 $y = 1.8 x^{1.01399}$


4-2. NJL7502L

《Reference URL》 https://www.nisshinbo-microdevices.co.jp/ja/pdf/datasheet/NJL7502L_J.pdf

《Reference URL》 https://akizukidenshi.com/download/ds/hamamatsu/s13948-01sb.pdf

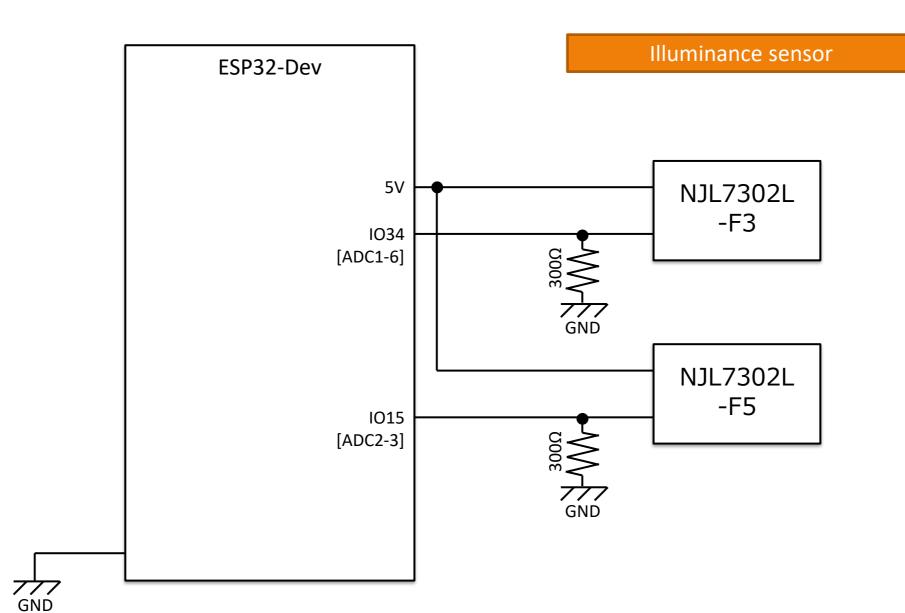
Relational expression between current and lux

4-3. S13948

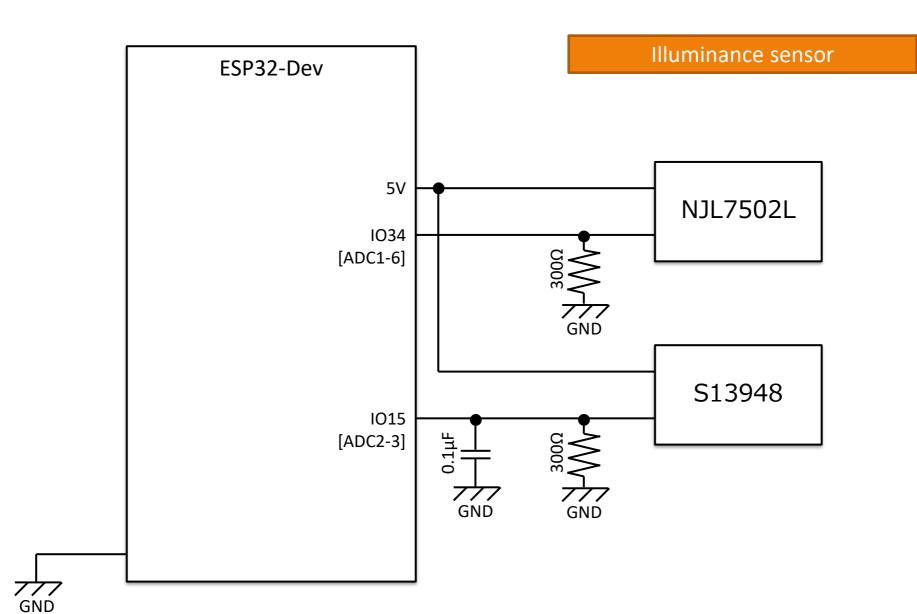
4-4. Grove-Light Sensor v1.2

《Reference URL》 https://wiki.seeedstudio.com/Grove-Light_Sensor

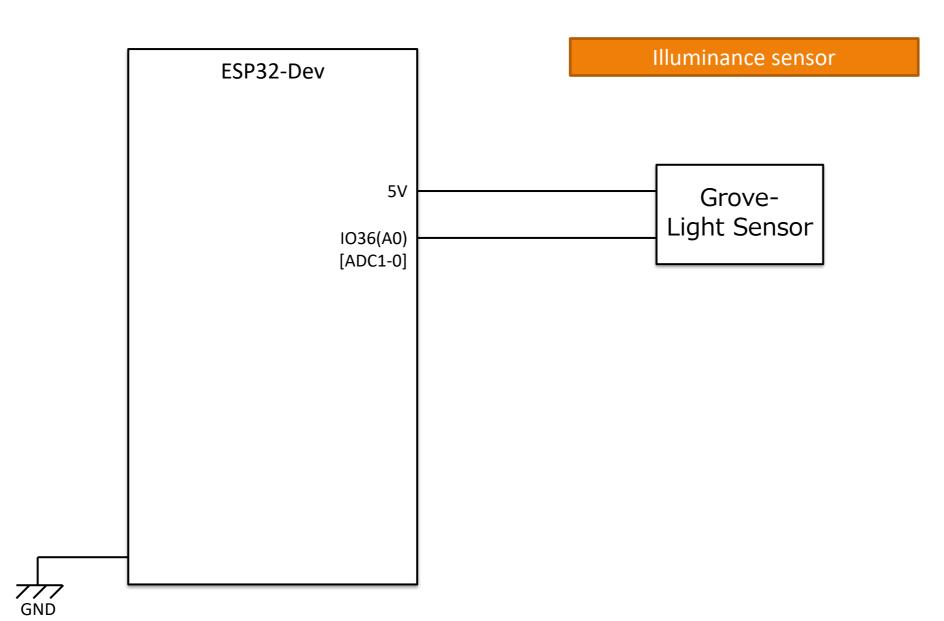
• Sample program


Specifications that display brightness with 10 levels of LEDs according to the output voltage No relationship graph between output voltage (current) and lux Check how much lux the 10 steps represent

Seeeduino	Grove-Light Sensor
5V	Red
GND	Black
Not Conencted	White
A0	Yellow


5-1. circuit 1

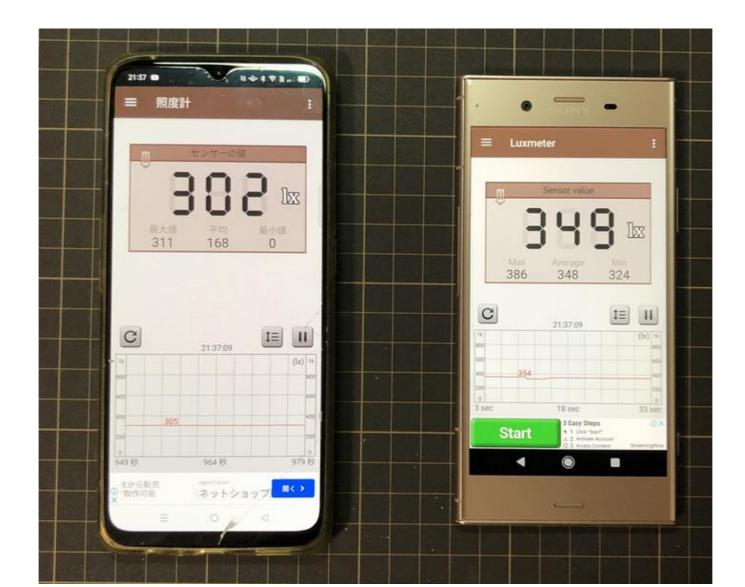
Attach sensors to two ADCs of ESP32 and measure voltage


5-2. circuit 2

Attach sensors to two ADCs of ESP32 and measure voltage

5-3. circuit 3

Attach a sensor to the ESP32's ADC and perform a voltage measurement

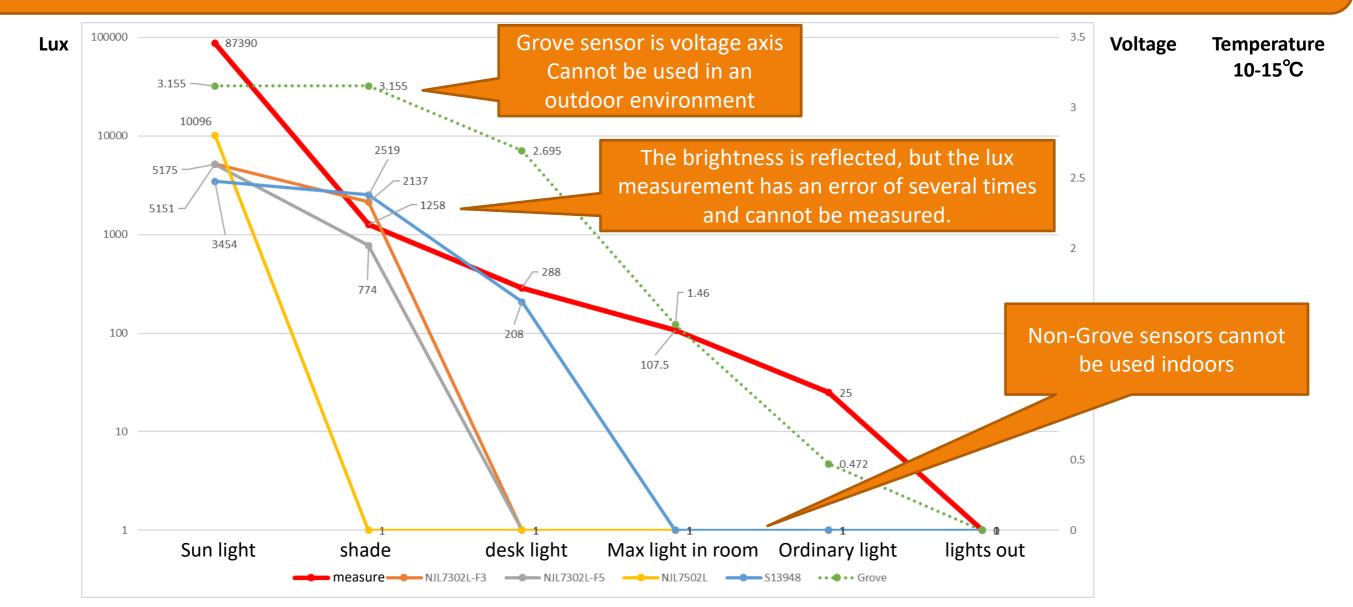

6. Program

		《Hobby-IT》 https	s://hobby-it.com/
	<pre>#define ADC1_PIN 34</pre>		
8	<pre>#define ADC2_PIN 15</pre>	(The URL is listed in th	ne summary column.)
9			
10	unsigned long loopCount = 0;		
11			
12	<pre>void setup() {</pre>		
13	// Serial monitor		
14	<pre>Serial.begin(115200);</pre>		
15	// ADC Setting		
16	<pre>//analogSetAttenuation(ADC_0db); // ATT 0dB[Default 11db]</pre>		
17	<pre>//analogSetAttenuation(ADC_6db); // ATT -6dB[Default lldb],</pre>		
18	<pre>//analogSetWidth(10); // Resolution Default:12bit(0-4095)[9-12]</pre>		
19	<pre>pinMode(ADC1_PIN, ANALOG);</pre>		
20	<pre>pinMode(ADC2_PIN, ANALOG);</pre>	 ADC port settings 	
21	// Display Serial monitor		
22	<pre>Serial.println("Setup completed!");</pre>		
23	}		
24			
25	<pre>void loop() {</pre>		
26	// Sleep[5 sec]		
27	delay(5000);	Measured every 5 seconds	
28	loopCount++;		
29	// ADC1[NJL7302L-F3]		
30	<pre>uintl6_t analog1_adc = analogRead(ADC1_PIN);</pre>		
31	<pre>uint32_t analog1_mv = analogReadMilliVolts(ADC1_PIN);</pre>	ADC measurement	
32	// Convert voltage to current (I=V/R) [micro A (* 1000)]		
33	double lightCurl = (double)analog1_mv * 1000.0 / 300.0; -	Current calculation (I=V/R)	- Sensor 1 measurement
34	// Convert current to lux		Selisor I measurement
35	<pre>double lightLuxl = pow(10, ((log10(lightCurl)-log10(1.8))/1.01399));</pre>	Lux calculation	
36	Serial.printf("[%ld] NJL7302L-F3 ADC=%d, mV=%d[mV], lightCur=%5.2f[A], lightLux=	6.lf[lux]\n", loopCount, analogl_adc, analogl_mv, lightCurl, lightLux1);
37	// ADC2[NJL7302L-F5]		Į
38	<pre>uintl6_t analog2_adc = analogRead(ADC2_PIN);</pre>		
39	<pre>uint32_t analog2_mv = analogReadMilliVolts(ADC2_PIN);</pre>		
40			
41			Sensor 2 measurement
42			
43	<pre>double lightLux2 = pow(10, ((log10(lightCur2)-log10(1.8))/1.01399));</pre>		
44		6.lf[lux]\n", loopCount, analog2_adc, analog2_mv, lightCur2, lightLux2);
45			J

All the programs used for the measurement are open to the public. 《Hobby-IT》 https://hobby-it.com/ (The URL is listed in the summary column.)

7. Measuring instrument

Use the smartphone (app) illuminance meter as a measuring instrument.


8. Measurement result 1 (5V, 330Ω)

When using a 330 ohm resistor, it is used when measuring a large brightness.

(However, the Grove sensor has a built-in resistance and cannot be changed. It cannot measure more than 5000 lux and is for indoor environments.)

Voltage can be measured by reflecting brightness, but lux measurement cannot be measured

because there is a difference of several times.

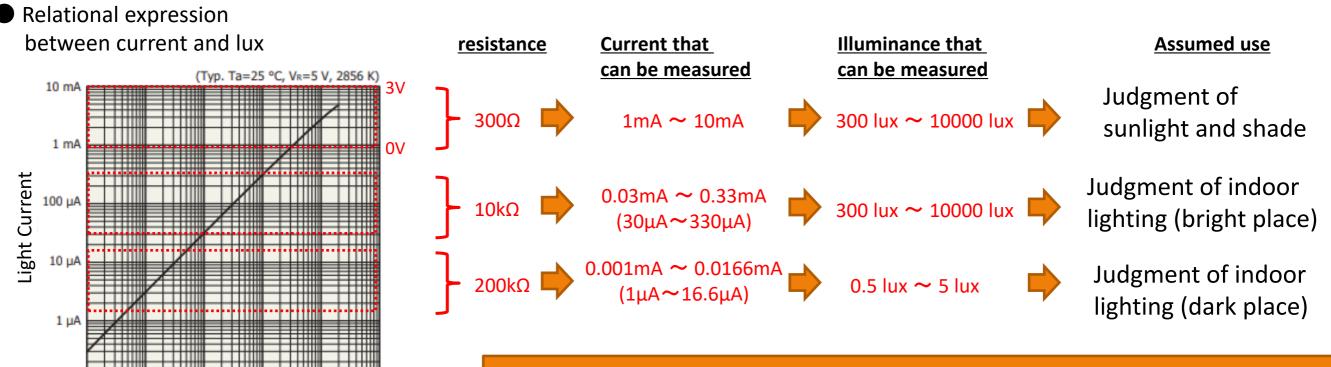
9-1. Review circuit and resistance value

100 nA

0.1

10

100

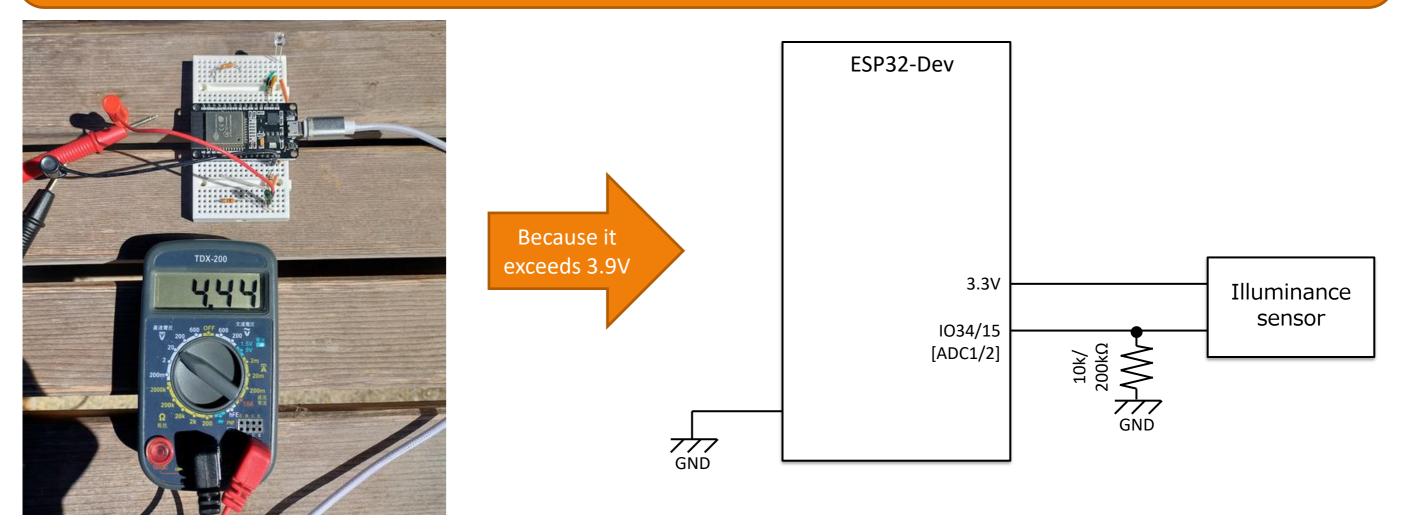

Illuminance(Lux)

1000

10000

The ESP32's ADC circuit cannot measure with high accuracy, so the current that can be used to measure illuminance is limited.

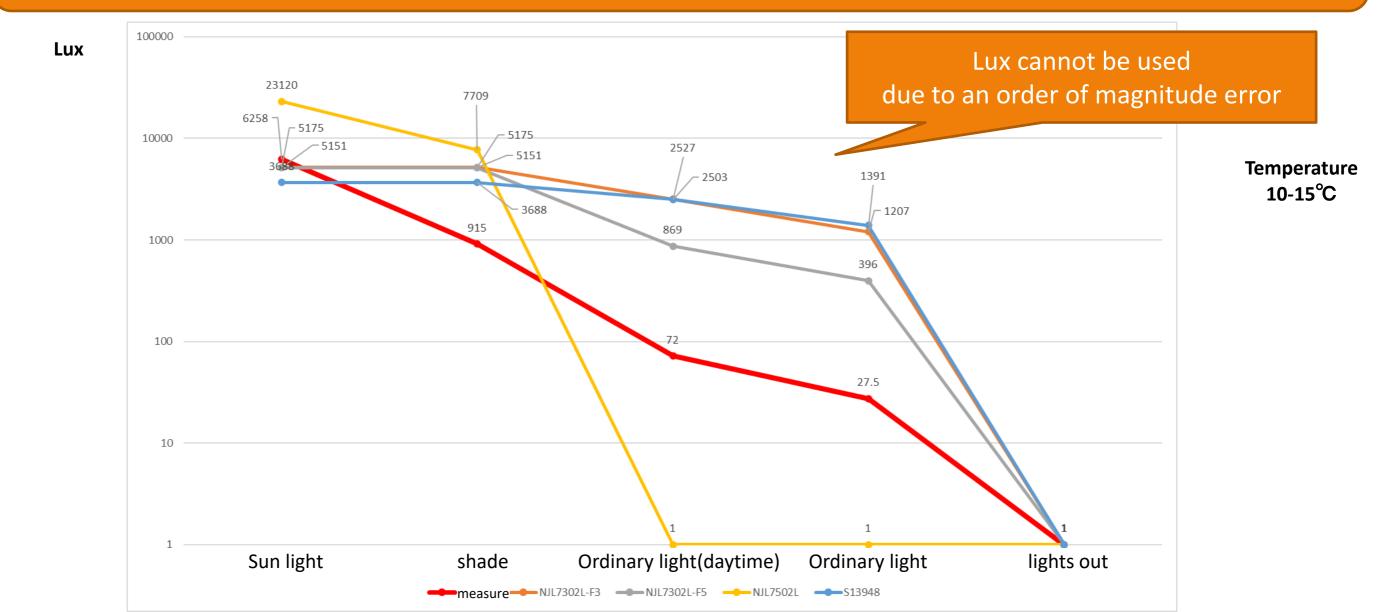
It is necessary to use different resistance values depending on the application.



Please use an arbitrary value for the size of the resistance depending on the brightness you want to measure. This time, I used these three types to understand three different places from the graph.

9-1. Review circuit and resistance value

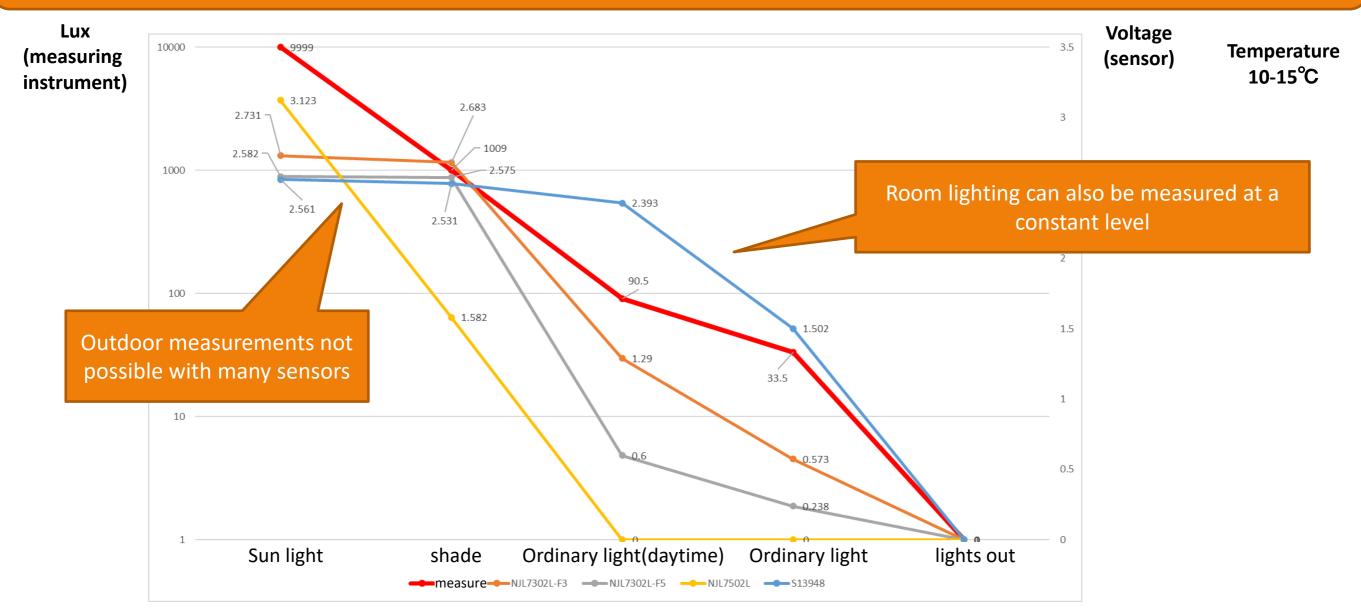
As the resistance value increases, the voltage increases even with the same current, so I checked if the ESP32 can handle it.


Change the input voltage from 5V to 3.3V because it exceeds the allowable input voltage of 3.9V. (Relationship graph of current lux is not available due to 5V input)

reference. Measurement result 2 (5V, $10k\Omega$)

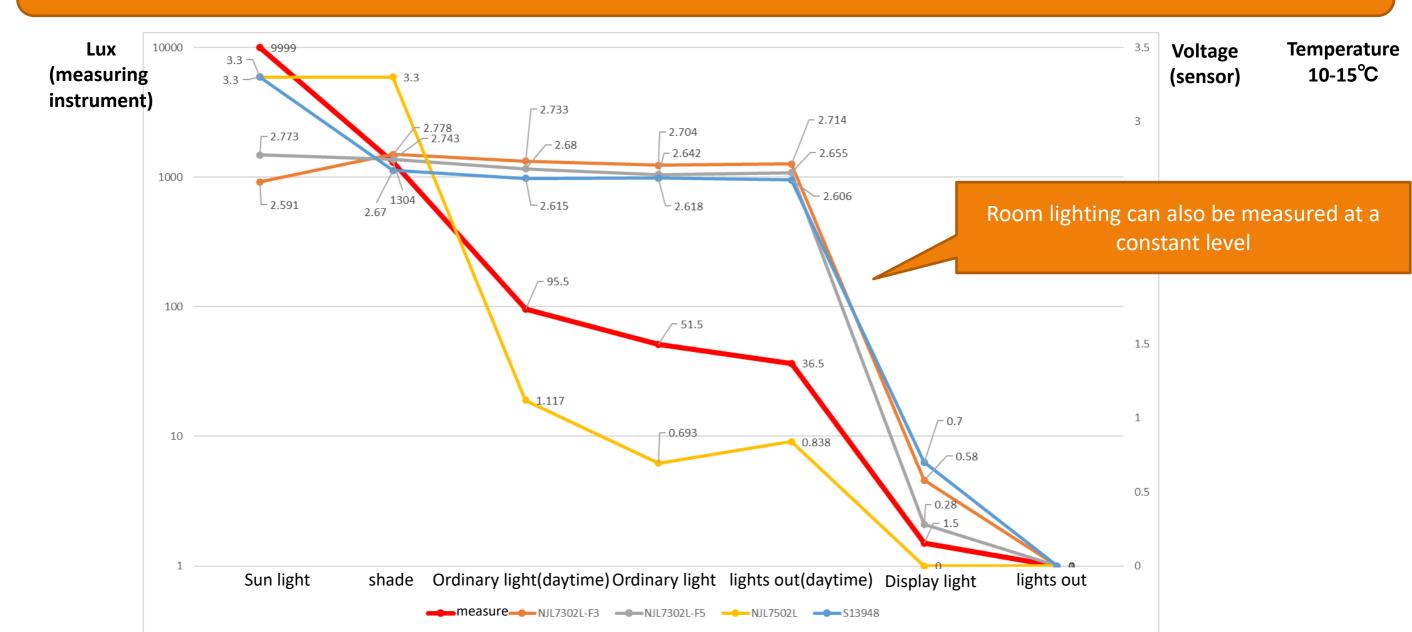
Just to make sure, I investigated whether lux measurement is possible. (Originally, it cannot be used because it exceeds 3.9V)

Lux measurement is not possible due to an error of an order of magnitude. (Brightness can be reflected)



10-1. Measurement result 3 (3.3V, $10K\Omega$)

Using an input voltage of 3.3V and a resistance of $10K\Omega$,


it is possible to determine ON/OFF of the lighting in the room (other than NJL7502L)

However, it is desirable to use it when installing in a bright place because the value is low even in a relatively bright place.

10-2. Measurement result 4 (3.3V, 200K Ω)

Using an input voltage of 3.3V and a resistance of $10K\Omega$, it is possible to determine whether the lighting in the room is ON/OFF. Can be used when you want to determine whether the lighting is on or off in a dark place, such as when installed in the corner of a room.

11. summary

- For the sensor investigated this time, "lux measurement is not available" in the configuration using ESP32
- All sensors "can be used to reflect brightness". There is no big difference in terms of performance.
- For personal use, "NJL7302L-F3" looks good considering price and ease of use. However, it doesn't matter which sensor you choose.
- It is better to use different input voltages and resistance values depending on the application. (However, it is desirable to use the Grove sensor indoors because the resistance cannot be changed)
 - -Sunlight, shade judgment etc. -Indoor lighting ON/OFF etc. (bright place) \Rightarrow Input voltage 3.3V, resistance 10K Ω -Indoor lighting ON/OFF etc. (dark place) \Rightarrow
 - \Rightarrow Input voltage 5V, resistance 330 Ω

 - Input voltage 3.3V, resistance $200K\Omega$