
Getting started

Table of contents

1. AI basics (artificial neurons and neural networks)

2. Google Colabratory and MNIST data

3. CNN-AI program

4. AI practice using Google Colabratory
(AI judgment of handwritten characters with a mouse)

Q1
Q2

Q3

Q4

Q5

Q6

Q7

Sum of errors ： Qt = Q1 + Q2 + Q3 + ...
= { y1 – (ax1 + b)}2 + { y2 – (ax2 + b)}2 + { y3 – (ax3 + b)}2 + ...

Simple linear regression is a linear function (y = ax + b) that can express the data of two variables x and y

The parameters a and b are determined so that the total error
(objective function) Qt is minimized.

⇨ least squares method

1-1. Machine learning Example 1) Simple linear regression

There is data that can be represented by a straight line, and a
relational expression is sought.

y1

x

y

y

x

ax1+b

error is 「Q1 = y1 – (ax1 + b)」

Since there is an error on the top
and bottom, sum the squares

Relational expression that
minimizes the sum of errors

① Decide on a model (linear function this time)

② The sum of errors (loss function) due to learning data is minimal
Determine the parameter that will be (or maximum)

Artificial neurons (perceptrons) modeled on human brain neurons

Input Output

x1

x2

x3

y

w1

w2

w3

【 judgment formula 】
(x1 * w1) + (x1 * w1) + (x1 * w1) > θ

input signal
x1〜x3

Weight of input
w1〜w3

1-2. Machine learning Example 2) Perceptron (artificial neuron)

0

1

(1) Activation function: Step function

(2) Activation function: Sigmoid function

0

1

The output is a binary value of 0 or 1

Output can be any value between
0 and 1

(x1 * w1) + (x1 * w1) + (x1 * w1)
> θ

1 if true, 0 if false

The output is expressed as y = σ(a).
σ is a sigmoid function and
σ(x) = 1 / (1 + Exp-x)a is called the "linear
sum of the inputs“

(x1 * w1) + (x2 * w2) + (x3 * w3) – θ
Often used in the output layer.

y

a

y = σ(a)

(3) Activation function: Ramp function
y x = y output is any value from 0

Simple and easy to calculate.
Commonly used in the middle class.

x

x

Threshold: θ

There are many functions in the output

Population
neuron

(step function)

Ex) When each input is 1, 2, 3, all weights are 1, and the threshold is 5

【Step function】
correct, so the output is "1"

Human neurons (nerve cells) Neuron (nerve cell) modeling

https://aitokuconsult.hatenablog.com/entry/neuralnetwork

(1 * 1) + (2 * 1) + (3 * 1) > 5
6 > 5

In order to understand the neural network, the intermediate layer (hidden layer) learns with a single layer model
(Neural network that judges ○ “circle” and × “cross” of 3*3 images)

【 Middle layer formula】
a1 = (x1 * w11) + (x2 * w12) ・・・ + (x9 * w19) – θ1
a2 = (x1 * w21) + (x2 * w22) ・・・ + (x9 * w29) – θ2
a3 = (x1 * w31) + (x2 * w32) ・・・ + (x9 * w39) – θ3
y1 = σ(a1), y2 = σ(a2), y3 = σ(a3)
σ is a sigmoid function

【 Output layer formula 】
z1 = (y1 * w11) + (y2 * w12) + (y3 * w13) – θ1
z2 = (y1 * w11) + (y2 * w22) + (y3 * w23) – θ2

1-4. Machine learning Example 3) Neural network

x1

x2

x3

x4

x5

x6

x7

x8

x9

y2

y3

y1

Input layer

z2

Output layerhidden layer

z1

Image

Input information
to all hidden layers
as it is

w11
w12

・・・

The hidden layer has
a detection pattern
and performs
feature extraction

Make ○× decision

Map pixels one by
one to the input layer

○ judgment

× judgment

The input of the hidden layer
with matching features has a
large weight (bold line)

low confidence

high confidence

Judged as "x"

The output of the hidden layer with matching
features is large, and the input of the output
layer has a large weight (bold line).

w11

w12

Each neuron weights the input and outputs
the result calculated by the threshold

1 0 1

0 1 0

1 0 1

Input data Output layerMiddle layer (hidden layer)

Learning
data 1

1.0 0.1 0.2

0.0 0.9 0.1

0.1 0.3 0.1

0.1 0.1 0.2

0.0 0.2 0.1

0.1 0.9 1.0

0.1 0.1 0.9

0.0 0.1 1.0

0.1 0.2 0.1

weighting w threshold θ

0.7

0.9

0.8

y1

y2

y3

0.1

1.0

0.9

1.0

0.3

0.1

0.7

0.6

z1

z2

weighting w threshold θ

0.1

0.9

0

1

1.0 : given data

1.0 : parameters to be optimized

Parameters are optimized so that the output is
equal to the correct data from the given data
[Input data and correct data are given as a set]

1 1 1

1 0 1

1 1 1

Learning
data 2

0.8

0.1

1

0

"○" judgment degree

・・・
Learning with large
amounts of data

Parameters (weighting) so as
to be close to all correct

dataand threshold)

Weights become
feature extraction

1-4. Machine learning Example 3) Neural network

"○" judgment degree

“×" judgment degree

“×" judgment degree

・・・
・・・

・・・

Output result Correct answer data

Hidden layer and output layer are common for
all training data

(optimize parameters for all training data)

2. Google Colabratory and MNIST data

MNIST data

GoogleColabratory

MNIST stands for "Mixed National Institute of Standards and Technology database".
It is provided free of charge for training AI on datasets publicly available on the internet.

The image dataset consists of 60,000 images of handwritten digits and 10,000 test images.

A Python development environment provided by Google for AI research and learning.
No preparation such as installation is required, and it can be used immediately with a web browser.
You can use it for free, but there is a limit of 12 hours at a time.

3-1．AI program

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

x_train = x_train.astype("float32") / 255

x_test = x_test.astype("float32") / 255

x_train = np.expand_dims(x_train, -1)

x_test = np.expand_dims(x_test, -1)

y_train = keras.utils.to_categorical(y_train, 10)

y_test = keras.utils.to_categorical(y_test, 10)

model = keras.Sequential(

[

keras.Input(shape=(28, 28, 1)),

layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),

layers.MaxPooling2D(pool_size=(2, 2)),

layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),

layers.MaxPooling2D(pool_size=(2, 2)),

layers.Flatten(),

layers.Dropout(0.5),

layers.Dense(10, activation="softmax"),

]

)

model.summary()

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

model.fit(x_train, y_train, batch_size=128, epochs=15, validation_split=0.1)

score = model.evaluate(x_test, y_test, verbose=0)

print("Test loss:", score[0])

print("Test accuracy:", score[1])

① Define the library to use

Load training and validation data (MNIST) to be used
(x: image data, y: correct label, train: 60,000 images, test: 10,000 images)

Convert 0 to 255 grayscale to 0 to 1 values

Add one dimension (to match the data format handled by AI)

Convert integer values of label data to binary class matrix
(Example: "Integer 2" is expressed as "0,0,1,0,0,0,0,0,0,0“)

② Prepare
data

③ Define AI model

④ Display AI model

⑤ Parameter optimization (AI learning) setting

⑥ Execution of parameter optimization (AI learning)

⑦ Evaluate AI performance after learning using
test data

Deep learning : Neural network with two or more intermediate layers
Convolutional neural network : A method of learning by subdividing the intermediate layer

Input layer Convolutional layer 1

28

28

26

32

3

・・・

・・・

・・・

26

26

28*28 pixels,
28*28 = 784 neurons

11

64

Feature extraction of 64
filters divided into 11*11
locations in 3*3 frames

3

・・・

11

11

・・
・

・・
・

・・
・

・・・

・・・

・・
・

・・
・

・・
・

5

64

・・・

previous layer output
(13*13*64)

3-2．Convolutional neural network

13

32

Max pooling image

MAX pooling layer 1

1

Flat layer DropOut
layer

line up
(to 1D array)

1

Delete at
constant rate

0 judgment

Judgment from 0 to 9

[10 neurons]

・・・

・
・
・

Dense layer

Determine each
element from 0 to 9
and output the ratio

Convolutional layer 2 MAX pooling layer 2

26*26 subdivision images

Reducing 4*4 to 2*2 frame
for feature extraction that
is resistant to deviation

Max pooling image26*26 subdivision images

Reducing 4*4 to 2*2 frame
for feature extraction that
is resistant to deviation

Feature extraction of 32 filters
divided into 26*26 locations in
3*3 frames

1 judgment

9 judgment

Leave only the maximum
value of each frame

Leave only the maximum
value of each frame

28

28

26 locations

32 filter 3

・・・

・・・

・・・

26

26

・・
・

・・
・

・・
・

3-3. convolutional layer

・・・

・
・
・

layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),

Each of the 32 filters features separately

Filter 1

By extracting features separately from the filter, the number of parameters to be
optimized can be greatly reduced.

Efficient feature
extraction

Filter 2 Filter 32

・・・

Segment the entire 28*28 image with the
same one filter (3*3) and extract features
(Features are extracted by dividing into 26*26 sections)

[Neuron output]
Activation function: Ramp function
(ReLU: Rectified Linear Unit)

y x = y

output is any value from 0
The output magnitude is determined
according to the input

x

x

filter =
kernel

Input layer Convolutional layer 1
28*28 pixels,
28*28 = 784 neurons

Feature extraction of 32 filters
divided into 26*26 locations in
3*3 frames

3-4. MAX pooling layer

layers.MaxPooling2D(pool_size=(2, 2)),

Capable of roughly capturing
features and extracting features that

are resistant to deviations, etc.

1 5 9 5

0 3 8 3

2 1 9 6

0 1 0 2

5

MaxPooling2D processing (pool_size = 2)

1 5 9 5

0 3 8 3

2 1 9 6

0 1 0 2

9

1 5 9 5

0 3 8 3

2 1 9 6

0 1 0 2

5 9

2 9

Extract the maximum value in the 2*2 frame

When implemented in
all sections

Get the maximum
value of each partition

3-5. Flat layer

layers.Flatten(),

5

64

1

・・・

・・・

・・・

・・・

・・・

・・・

Neurons arranged in 5*5*64 (1600 pieces)

・
・

・

1600

rearrange in one row
(Rearrange to 1D array)

The role of preparing data
for the next layer

3-6. DropOut layer

layers.Dropout(0.5),

・
・

・

1600

DropOut layer

Randomly disables a certain percentage of neuron outputs.
This time, the exclusion rate is 0.5, so it will be deleted at a rate of 50%.

・・
・

Output(Dense) layer

Effective in preventing
overfitting

x

y

The desired relational expression is dotted line,
But Overfitting is a relational expression that

is too biased in the given data.

10

・
・

・

Flat layer

3-7. Dense layer (fully connected layer)

layers.Dense(10, activation="softmax"),

Numerical judgment from 0 to 9 is performed

・
・

・

1600

DropOut layer

All neurons in the previous
layer are connected

・・
・

Output(Dense) layer

10

[Neuron output]
activation function: softmax function

A function whose output varies greatly as the input increases
Since it is a relational expression that indicates the proportion of
each from the whole, the sum of each element of the output
value (probability of the classification label) is 1 (100%).

The softmax function with two elements (two classification
labels) is the same as the sigmoid function.

y

x

Deep learning : Neural network with two or more intermediate layers
Convolutional neural network : A method of learning by subdividing the intermediate layer

Input layer Convolutional layer 1

28

28

26

32

3

・・・

・・・

・・・

26

26

28*28 pixels,
28*28 = 784 neurons

11

64

Feature extraction of 64
filters divided into 11*11
locations in 3*3 frames

3

・・・

11

11

・・
・

・・
・

・・
・

・・・

・・・

・・
・

・・
・

・・
・

5

64

・・・

previous layer output
(13*13*64)

3-2．Convolutional neural network

13

32

Max pooling image

MAX pooling layer 1

1

Flat layer DropOut
layer

line up
(to 1D array)

1

Delete at
constant rate

0 judgment

Judgment from 0 to 9

[10 neurons]

・・・

・
・
・

Dense layer

Determine each
element from 0 to 9
and output the ratio

Convolutional layer 2 MAX pooling layer 2

26*26 subdivision images

Reducing 4*4 to 2*2 frame
for feature extraction that
is resistant to deviation

Max pooling image26*26 subdivision images

Reducing 4*4 to 2*2 frame
for feature extraction that
is resistant to deviation

Feature extraction of 32 filters
divided into 26*26 locations in
3*3 frames

1 judgment

9 judgment

Leave only the maximum
value of each frame

Leave only the maximum
value of each frame

3-8. AI learning (optimization of parameters [weights and thresholds])

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

loss="categorical_crossentropy"

optimizer="adam"

metrics=["accuracy"]

Specifying a loss (objective) function.
(The loss function is the metric we try to minimize while training the
model)
Commonly used loss functions in multiclass classification tasks

adam (Adaptive Moment Estimation) is an optimization
algorithm that is widely used as an improved version of gradient
descent.
adam has features that automatically improve the adaptability
of learning, such as adjusting the learning rate and using
momentum.

The evaluation metric that is set. Evaluation metrics are used
to evaluate model performance during and after training.
Accuracy rates for training and validation data are calculated
and displayed during training.

<Reference> About how to solve equations

Transform the Formula Find by Substituting Values

３ｘ ＋ ２ｙ ＝ １３ ・・・ (1)
５ｘ ＋ ３ｙ ＝ ２１ ・・・ (2)

３ｘ ＝ １３ ー ２ｙ
ｘ ＝ （１３ ー ２ｙ） ÷ ３

（５＊（１３ ー ２ｙ）÷３） ＋ ３ｙ ＝ ２１
５＊（１３ ー ２ｙ） ＋ ９ｙ ＝ ６３

６５ － １０ｙ ＋ ９ｙ ＝ ６３
ｙ ＝ ２

Transforming (1) gives

Substituting into (2) gives

Substituting into (1) gives

３ｘ ＋ ２＊２ ＝ １３
ｘ ＝ ３

３ｘ ＋ ２ｙ ＝ １３ ・・・ (1)
５ｘ ＋ ３ｙ ＝ ２１ ・・・ (2)

Can be obtained exactly, but only if the
relational expression is obtained by transforming

３＊２ ＋ ２＊２ ＝ １０ ＜ １３
５＊２ ＋ ３＊２ ＝ １６ ＜ ２１

If we substitute x=2 and y=2

Value is small, enter a larger value
Substituting x=3 and y=2, we get

The correct answer can be obtained for any
complicated relational expression.

３＊３ ＋ ２＊２ ＝ １３ ＝ １３
５＊３ ＋ ３＊２ ＝ ２１ ＝ ２１

Since the correct answers match, the correct answer is

ｘ＝３，ｙ＝２

3-9. Gradient descent

Gradient Descent is a type of optimization algorithm used to find parameters
that minimize a loss function.

The basic idea of gradient descent is to compute the gradient of the
loss function (i.e. the derivative of the loss function with respect to
each parameter) and reduce the value of the loss function by updating
the parameters in the direction the gradient points.
Specifically, the procedure is as follows.

1. Set initial values for parameters.
2. Compute the gradient of the loss function. This is the partial

derivative of the loss function with respect to each parameter.
3. Update the parameters using the gradient multiplied by the

learning rate (usually a small positive value). This updates the
parameters in the direction of decreasing values of the loss function.

4. Repeat steps 2 and 3 until convergence or until the specified
number of epochs is reached.

loss function

Image of Gradient Descent

Find the slope by partial
differentiation and adjust the
parameters so that the loss

function becomes small.

[Learning rate]
how much to move parameters
Small: takes time to converge.

May not cross the valley again.
Big: Might jump over valleys

first valley second valley

3-10. AI learning (optimization of parameters [weights and thresholds])

model.fit(x_train, y_train, batch_size=128, epochs=15, validation_split=0.1)

validation_split=0.1 10% is set for verification data after learning. Therefore, the training data is 90%.
Since there are 60,000 MNIST data in total, 54,000 are used for learning.

epochs=15

batch_size=128

An epoch is to learn the data all at once. This time, it will be one epoch if all
54000 image data are learned.
Since 15 is set, 54000 image data will be learned 15 times.

Batch size is the number of data to learn at once. Batch means processing
together.
Since 128 sheets are processed together, 54000 sheets require 422 batch
processing (=54000/128). Therefore, one epoch is batch processing 422 times,
and the processing status can be checked in batch units.

3-11. AI evaluation (after AI learning)

score = model.evaluate(x_test, y_test, verbose=0)

print("Test loss:", score[0])

print("Test accuracy:", score[1])

Evaluate AI performance with 10,000 MNIST test data.(verbose is a learning status information display
parameter. 0 is not displayed in particular. Set 1 to display a progress bar, etc.)

model.evaluate(x_test, y_test, verbose=0)

Loss

Accuracy

Loss function value on test data.
The parameters have been optimized (AI learns) so that the loss function becomes small.

Accuracy rate on test data. Percentage of correct judgments.

：

：

：

	スライド 1: Thorough understanding of AI-CNN （Convolutional Neural Network）
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20

